1、初中数学一次函数真题汇编附答案一、选择题1若正比例函数ykx的图象经过第二、四象限,且过点A(2m,1)和B(2,m),则k的值为()AB2C1D1【答案】A【解析】【分析】根据函数图象经过第二、四象限,可得k0,再根据待定系数法求出k的值即可【详解】解:正比例函数ykx的图象经过第二、四象限,k0正比例函数ykx的图象过点A(2m,1)和B(2,m),解得:或 (舍去)故选:A【点睛】本题考查了正比例函数的系数问题,掌握正比例函数的性质、待定系数法是解题的关键2一次函数是(是常数,)的图像如图所示,则不等式的解集是( )ABCD【答案】C【解析】【分析】根据一次函数的图象看出:一次函数y=k
2、x+b(k,b是常数,k0)的图象与x轴的交点是(2,0),得到当x2时,y0,即可得到答案【详解】解:一次函数y=kx+b(k,b是常数,k0)的图象与x轴的交点是(2,0),当x2时,y0故答案为:x2故选:C.【点睛】本题主要考查对一次函数的图象,一次函数与一元一次不等式等知识点的理解和掌握,能观察图象得到正确结论是解此题的关键3若点,都是一次函数图象上的点,并且,则下列各式中正确的是( )ABCD【答案】D【解析】【分析】根据一次函数的性质即可得答案【详解】一次函数中,y随x的增大而减小,故选:D【点睛】本题考查一次函数的性质,对于一次函数y=kx+b(k0),当k0时,图象经过一、三
3、、象限,y随x的增大而增大;当k0时,图象经过二、四、象限,y随x的增大而减小;熟练掌握一次函数的性质是解题关键4在同一平面直角坐标系中的图像如图所示,则关于的不等式的解为( )ABCD无法确定【答案】C【解析】【分析】求关于的不等式的解集就是求:能使函数的图象在函数的上边的自变量的取值范围【详解】解:能使函数的图象在函数的上边时的自变量的取值范围是故关于的不等式的解集为:故选:【点睛】本题考查了一次函数与一元一次不等式的关系,从函数的角度看,就是寻求使一次函数的值大于(或小于)0的自变量的取值范围;从函数图象的角度看,就是确定直线在轴上(或下)方部分所有的点的横坐标所构成的集合利用数形结合是
4、解题的关键5一列动车从甲地开往乙地, 一列普通列车从乙地开往甲地,两车均匀速行驶并同时出发,设普通列车行驶的时间为 (小时),两车之间的距离为 (千米),如图中的折线表示与之间的函数关系,下列说法:动车的速度是千米/小时;点B的实际意义是两车出发后小时相遇;甲、乙两地相距千米;普通列车从乙地到达甲地时间是小时,其中不正确的有( )A个B个C个D个【答案】B【解析】【分析】由x=0时y=1000可判断;由运动过程和函数图像关系可判断;求出普通列车速度,设动车的速度为x千米/小时,根据“动车3小时行驶的路程+普通列车3小时行驶的路程=1000”列方程求解可判断;根据x=12时的实际意义可判断.【详
5、解】解:由x=0时,y=1000知,甲地和乙地相距1000千米,正确;如图,出发后3小时,两车之间的距离为0,可知点B的实际意义是两车出发后3小时相遇,正确;普通列车的速度是=千米/小时,设动车的速度为x千米/小时,根据题意,得:3x+3=1000,解得:x=250,动车的速度为250千米/小时,错误;由图象知x=t时,动车到达乙地,x=12时,普通列车到达甲地,即普通列车到达终点共需12小时,错误;故选B.【点睛】本题主要考查一次函数的应用,根据题意弄懂函数图象中各拐点坐标的实际意义及行程问题中蕴含的相等关系是解题的关键6如图,在同一直角坐标系中,函数和的图象相交于点,则不等式的解集是( )
6、ABCD【答案】D【解析】【分析】先利用y1=3x得到A(1,3),再求出m得到y2-2x+5,接着求出直线y2-2x+m与x轴的交点坐标为(,0),然后写出直线y2-2x+m在x轴上方和在直线y1=3x下方所对应的自变量的范围【详解】当x=1时,y=3x=3,A(1,3),把A(1,3)代入y22x+m得2+m=3,解得m=5,y22x+5,解方程2x+5=0,解得x=,则直线y22x+m与x轴的交点坐标为(,0),不等式0y2y1的解集是1x故选:D【点睛】本题考查了一次函数与一元一次不等式,会观察一次函数图象7已知点(k,b)为第二象限内的点,则一次函数的图象大致是( )ABCD【答案】
7、D【解析】【分析】根据已知条件“点(k,b)为第二象限内的点”推知k、b的符号,由它们的符号可以得到一次函数y=-kx+b的图象所经过的象限【详解】解:点(k,b)为第二象限内的点,k0,b0,-k0一次函数y=-kx+b的图象经过第一、二、三象限,观察选项,D选项符合题意故选:D【点睛】本题主要考查一次函数图象在坐标平面内的位置与k、b的关系解答本题注意理解:直线y=kx+b所在的位置与k、b的符号有直接的关系k0时,直线必经过一、三象限;k0时,直线必经过二、四象限;b0时,直线与y轴正半轴相交;b=0时,直线过原点;b0时,直线与y轴负半轴相交8如图,直线y=-x+m与直线y=nx+5n
8、(n0)的交点的横坐标为-2,则关于x的不等式-x+mnx+5n0的整数解为()A-5,-4,-3B-4,-3C-4,-3,-2D-3,-2【答案】B【解析】【分析】根据一次函数图像与不等式的性质即可求解.【详解】直线y=nx+5n中,令y=0,得x=-5两函数的交点横坐标为-2,关于x的不等式-x+mnx+5n0的解集为-5x-2故整数解为-4,-3,故选B.【点睛】此题主要考查一次函数与不等式的关系,解题的关键是熟知一次函数的图像与性质.9随着“互联网+”时代的到来,一种新型的打车方式受到大众欢迎打车总费用y(单位:元)与行驶里程x(单位:千米)的函数关系如图所示如果小明某次打车行驶里程为
9、22千米,则他的打车费用为( )A33元B36元C40元D42元【答案】C【解析】分析:待定系数法求出当x12时y关于x的函数解析式,再求出x=22时y的值即可详解:当行驶里程x12时,设y=kx+b,将(8,12)、(11,18)代入,得: ,解得: ,y=2x4,当x=22时,y=2224=40,当小明某次打车行驶里程为22千米,则他的打车费用为40元.故选C.点睛:本题考查一次函数图象和实际应用. 认真分析图象,并利用待定系数法求一次函数的解析式是解题的关键.10如图,已知一次函数的图象与轴,轴分别交于点,与正比例函数交于点,已知点的横坐标为2,下列结论:关于的方程的解为;对于直线,当时
10、,;直线中,;方程组的解为其中正确的有( )个A1B2C3D4【答案】C【解析】【分析】把正比例函数与一次函数的交点坐标求出,根据正比例函数与一次函数的交点先把一次函数的解析式求解出来,再分别验证即可得到答案.【详解】解:一次函数与正比例函数交于点,且的横坐标为2,纵坐标:, 把C点左边代入一次函数得到:,故正确;,直线,当时,故正确;直线中,故错误;,解得,故正确;故有三个正确;故答案为C.【点睛】本题主要考查了一次函数与正比例函数的综合应用,能正确用待定系数法求解未知量是解题的关键,再解题的过程中,要利用好已知信息,比如函数图像,很多时候都可以方便解题;11如图,经过点B(2,0)的直线y
11、kx+b与直线y4x+2相交于点A(1,2),4x+2kx+b0的解集为()Ax2B2x1Cx1Dx1【答案】B【解析】【分析】由图象得到直线y=kx+b与直线y=4x+2的交点A的坐标(-1,-2)及直线y=kx+b与x轴的交点坐标,观察直线y=4x+2落在直线y=kx+b的下方且直线y=kx+b落在x轴下方的部分对应的x的取值即为所求【详解】经过点B(2,0)的直线ykx+b与直线y4x+2相交于点A(1,2),直线ykx+b与直线y4x+2的交点A的坐标为(1,2),直线ykx+b与x轴的交点坐标为B(2,0),又当x1时,4x+2kx+b,当x2时,kx+b0,不等式4x+2kx+b0
12、的解集为2x1故选B【点睛】本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合12弹簧挂上物体后会伸长,测得一弹簧的长度y(cm)与所挂重物的质量x(kg)有下面的关系,那么弹簧总长y(cm)与所挂重物x(kg)之间的关系式为( )x(kg)0123456y(cm)1212.51313.51414.515Ay=0.5x+12By=x+10.5Cy=0.5x+10Dy=x+12【答案】A【解析】分析:由上表可知12.5-12
13、=0.5,13-12.5=0.5,13.5-13=0.5,14-13.5=0.5,14.5-14=0.5,15-14.5=0.5,0.5为常量,12也为常量故弹簧总长y(cm)与所挂重物x()之间的函数关系式详解:由表可知:常量为0.5;所以,弹簧总长y(cm)与所挂重物x()之间的函数关系式为y=0.5x+12故选A点睛:本题考查了函数关系,关键在于根据图表信息列出等式,然后变形为函数的形式13若一次函数的函数值随的增大而增大,则( )ABCD【答案】B【解析】【分析】根据一次函数图象的增减性来确定(k-2)的符号,从而求得k的取值范围【详解】在一次函数y=(k-2)x+1中,y随x的增大而
14、增大,k-20,k2,故选B.【点睛】本题考查了一次函数图象与系数的关系在直线y=kx+b(k0)中,当k0时,y随x的增大而增大;当k0时,y随x的增大而减小14如图1,在RtABC中,ACB=90,点P以每秒1cm的速度从点A出发,沿折线ACCB运动,到点B停止过点P作PDAB,垂足为D,PD的长y(cm)与点P的运动时间x(秒)的函数图象如图2所示当点P运动5秒时,PD的长是( )A1.5cmB1.2cmC1.8cmD2cm【答案】B【解析】【分析】【详解】由图2知,点P在AC、CB上的运动时间时间分别是3秒和4秒,点P的运动速度是每秒1cm ,AC=3,BC=4在RtABC中,ACB=
15、90,根据勾股定理得:AB=5如图,过点C作CHAB于点H,则易得ABCACH,即如图,点E(3,),F(7,0)设直线EF的解析式为,则,解得:直线EF的解析式为当时,故选B15一次函数y3xb和yax3的图象如图所示,其交点为P(2,5),则不等式3xbax3的解集在数轴上表示正确的是( )ABCD【答案】A【解析】【分析】直接根据两函数图象的交点求出不等式的解集,再在数轴上表示出来即可【详解】解:由函数图象可知,当x-2时,一次函数y=3x+b的图象在函数y=ax-3的图象的上方,不等式3x+bax-3的解集为:x-2,在数轴上表示为:故选:A.【点睛】本题考查的是一次函数与一元一次不等
16、式,能利用函数图象求出不等式的解集是解答此题的关键16如图所示,已知为反比例函数图象上的两点,动点在轴正半轴上运动,当的值最大时,连结,的面积是 ( )AB1CD【答案】D【解析】【分析】先根据反比例函数解析式求出A,B的坐标,然后连接AB并延长AB交x轴于点,当P在位置时,,即此时的值最大,利用待定系数法求出直线AB的解析式,从而求出的坐标,进而利用面积公式求面积即可【详解】当时, ,当时, ,连接AB并延长AB交x轴于点,当P在位置时,,即此时的值最大设直线AB的解析式为 ,将代入解析式中得 解得 ,直线AB解析式为 当时, ,即, 故选:D【点睛】本题主要考查一次函数与几何综合,掌握待定
17、系数法以及找到何时取最大值是解题的关键17如图,已知直线与相交于点,点的横坐标为,则关于的不等式的解集在数轴上表示正确的是( ) ABCD【答案】D【解析】试题解析:当x-1时,x+bkx-1,即不等式x+bkx-1的解集为x-1故选A考点:一次函数与一元一次不等式.18函数中,随的增大而增大,则直线经过()A第一、三、四象限B第二、三、四象限C第一、二、四象限D第一、二、三象限【答案】B【解析】【分析】根据一次函数的增减性,可得;从而可得,据此判断直线经过的象限【详解】解:函数中,y随x的增大而增大,则,直线经过第二、三、四象限故选:B【点睛】本题考查了一次函数的性质,正确掌握一次函数图象与
18、系数的关系是解题的关键即一次函数y=kx+b(k0)中,当k0时,y随x的增大而增大,图象经过一、三象限;当k0时,y随x的增大而减小,图象经过二、四象限;当b0时,此函数图象交y轴于正半轴;当b0时,此函数图象交y轴于负半轴19在平面直角坐标系中,直线与y轴交于点A,如图所示,依次正方形,正方形,正方形,且正方形的一条边在直线m上,一个顶点x轴上,则正方形的面积是( )ABCD【答案】B【解析】【分析】由一次函数,得出点A的坐标为(0,1),求出正方形M1的边长,即可求出正方形M1的面积,同理求出正方形M2的面积,即可推出正方形的面积.【详解】一次函数,令x=0,则y=1,点A的坐标为(0,1),OA=1,正方形M1的边长为,正方形M1的面积=,正方形M1的对角线为,正方形M2的边长为,正方形M2的面积=,同理可得正方形M3的面积=,则正方形的面积是,故选B.【点睛】本题考查一次函数图象上点的坐标特征、规律型,解答本题的关键是明确题意,发现题目中面积之间的关系,运用数形结合思想解答20如图,函数和的图象相交于A(m,3),则不等式的解集为( )ABCD【答案】C【解析】【分析】【详解】解:函数y=2x和y=ax+4的图象相交于点A(m,3),3=2m,解得m=点A的坐标是(,3)当时,y=2x的图象在y=ax+4的图象的下方,不等式2xax+4的解集为故选C