江苏大数学分析-20-2第二型曲线积分课件.ppt

上传人(卖家):ziliao2023 文档编号:5887010 上传时间:2023-05-13 格式:PPT 页数:36 大小:962KB
下载 相关 举报
江苏大数学分析-20-2第二型曲线积分课件.ppt_第1页
第1页 / 共36页
江苏大数学分析-20-2第二型曲线积分课件.ppt_第2页
第2页 / 共36页
江苏大数学分析-20-2第二型曲线积分课件.ppt_第3页
第3页 / 共36页
江苏大数学分析-20-2第二型曲线积分课件.ppt_第4页
第4页 / 共36页
江苏大数学分析-20-2第二型曲线积分课件.ppt_第5页
第5页 / 共36页
点击查看更多>>
资源描述

1、第二十章第二十章 曲线积分曲线积分2 2 第二型曲线积分第二型曲线积分oxyABL一、问题的提出1 nMiM1 iM2M1Mix iy 实例实例:变力沿曲线所作的功变力沿曲线所作的功,:BALjyxQiyxPyxF),(),(),(常力所作的功常力所作的功分割分割.),(,),(,1111110BMyxMyxMMAnnnn .)()(1jyixMMiiii .ABFW 求和求和.),(),(1 niiiiiiiyQxP 取极限取极限.),(),(lim10 niiiiiiiyQxPW 近似值近似值精确值精确值,),(),(),(jQiPFiiiiii 取取,),(1iiiiiMMFW .),(

2、),(iiiiiiiyQxPW 即即 niiWW1oxyABL1 nMiM1 iM2M1M),(iiF ix iy 二、对坐标的曲线积分的概念,0.),(,).,;,2,1(),(,),(),(.),(),(,11101111222111时时长度的最大值长度的最大值如果当各小弧段如果当各小弧段上任意取定的点上任意取定的点为为点点设设个有向小弧段个有向小弧段分成分成把把上的点上的点用用上有界上有界在在函数函数向光滑曲线弧向光滑曲线弧的一条有的一条有到点到点面内从点面内从点为为设设 iiiiiiiiiiniinnnMMyyyxxxBMAMniMMnLyxMyxMyxMLLyxQyxPBAxoyL1

3、.定义定义.),(lim),(,(),(,),(101iiniiLniiiixPdxyxPxLyxPxP 记作记作或称第二类曲线积分)或称第二类曲线积分)积分积分的曲线的曲线上对坐标上对坐标在有向曲线弧在有向曲线弧数数则称此极限为函则称此极限为函的极限存在的极限存在类似地定义类似地定义.),(lim),(10iiniiLyQdyyxQ ,),(),(叫做被积函数叫做被积函数其中其中yxQyxP.叫积分弧段叫积分弧段L2.存在条件:存在条件:.,),(),(第二类曲线积分存在第二类曲线积分存在上连续时上连续时在光滑曲线弧在光滑曲线弧当当LyxQyxP3.组合形式组合形式 LLLdyyxQdxyx

4、PdyyxQdxyxP),(),(),(),(.,jdyidxdsjQiPF 其其中中.LdsF4.4.推广推广 空间有向曲线弧空间有向曲线弧.),(lim),(10iiiniixPdxzyxP .RdzQdyPdx.),(lim),(10iiiniiyQdyzyxQ .),(lim),(10iiiniizRdzzyxR 5.5.性质性质.,)1(2121 LLLQdyPdxQdyPdxQdyPdxLLL则则和和分成分成如果把如果把则则有向曲线弧有向曲线弧方向相反的方向相反的是与是与是有向曲线弧是有向曲线弧设设,)2(LLL 即对坐标的曲线积分与曲线的方向有关即对坐标的曲线积分与曲线的方向有关

5、.LLdyyxQdxyxPdyyxQdxyxP),(),(),(),(三、对坐标的曲线积分的计算,),(),(,0)()(,)(),(,),(,),(),(,),(),(22存在存在则曲线积分则曲线积分且且续导数续导数一阶连一阶连为端点的闭区间上具有为端点的闭区间上具有及及在以在以运动到终点运动到终点沿沿的起点的起点从从点点时时到到变变单调地由单调地由当参数当参数的参数方程为的参数方程为续续上有定义且连上有定义且连在曲线弧在曲线弧设设 LdyyxQdxyxPttttBLALyxMttytxLLyxQyxP 定理定理dttttQtttPdyyxQdxyxPL)()(),()()(),(),(),

6、(且且特殊情形特殊情形.)(:)1(baxxyyL,终点为,终点为起点为起点为.)()(,)(,dxxyxyxQxyxPQdyPdxbaL 则则.)(:)2(dcyyxxL,终点为,终点为起点为起点为.),()(),(dyyyxQyxyyxPQdyPdxdcL 则则.,)()()(:)3(终点终点起点起点推广推广ttztytx dtttttRttttQttttPRdzQdyPdx)()(),(),()()(),(),()()(),(),(4)两类曲线积分之间的联系:两类曲线积分之间的联系:,)()(tytxL :设有向平面曲线弧为设有向平面曲线弧为,),(为为处的切线向量的方向角处的切线向量的

7、方向角上点上点yxL LLdsQPQdyPdx)coscos(则则其中其中,)()()(cos22ttt ,)()()(cos22ttt (可以推广到空间曲线上(可以推广到空间曲线上 ),),(为为处的切线向量的方向角处的切线向量的方向角上点上点zyx dsRQPRdzQdyPdx)coscoscos(则则 dstA rdA,dsAt可用向量表示可用向量表示,其中其中,RQPA ,cos,cos,cos t,dzdydxdstrd 有向曲线元;有向曲线元;.上的投影上的投影在向量在向量为向量为向量tAAt处的单位切向量处的单位切向量上点上点),(zyx 例例1.)1,1()1,1(,2的一段弧

8、的一段弧到到上从上从为抛物线为抛物线其中其中计算计算BAxyLxydxL 解解的定积分,的定积分,化为对化为对x)1(.xy OBAOLxydxxydxxydx 1001)(dxxxdxxx 10232dxx.54 xy 2)1,1(A)1,1(B的定积分,的定积分,化为对化为对y)2(,2yx ABLxydxxydx 1122)(dyyyy.11到到从从 y 1142dyy.54 xy 2)1,1(A)1,1(B.)0,()0,()2(;)1(,2的直线段的直线段轴到点轴到点沿沿从点从点的上半圆周的上半圆周针方向绕行针方向绕行、圆心为原点、按逆时、圆心为原点、按逆时半径为半径为为为其中其中计

9、算计算aBxaAaLdxyL 例例2解解,sincos:)1(ayaxL,变到变到从从 0)0,(aA)0,(aB 0原式原式 daa)sin(sin22)0,(aA)0,(aB .343a ,0:)2(yL,变到变到从从aax aadx0原式原式.0 问题问题:被积函数相同,起点和终点也相同,但:被积函数相同,起点和终点也相同,但路径不同积分结果不同路径不同积分结果不同.03a)(cos)cos1(2 d 例例3).1,1(),0,1()0,0(,)3(;)1,1()0,0()2(;)1,1()0,0()1(,2222依次是点依次是点,这里,这里有向折线有向折线的一段弧的一段弧到到上从上从抛

10、物线抛物线的一段弧的一段弧到到上从上从抛物线抛物线为为其中其中计算计算BAOOABBOyxBOxyLdyxxydxL 2xy )0,1(A)1,1(B解解.)1(的积分的积分化为对化为对 x,10,:2变到变到从从xxyL 1022)22(dxxxxx原式原式 1034dxx.1)0,1(A)1,1(B2yx .)2(的积分的积分化为对化为对 y,10,:2变到变到从从yyxL 1042)22(dyyyyy原式原式 1045dxy.1)0,1(A)1,1(B)3(ABOAdyxxydxdyxxydx2222原式原式,上上在在 OA,10,0变到变到从从xy 1022)002(2dxxxdyxx

11、ydxOA.0,上上在在 AB,10,1变变到到从从yx 102)102(2dyydyxxydxAB.1 10 原原式式.1)0,1(A)1,1(B问题问题:被积函数相同,起点和终点也相同,但:被积函数相同,起点和终点也相同,但路径不同而积分结果相同路径不同而积分结果相同.例例4 计算第二型曲线积分 Ldzxdyyxxydx2解 Ldzxdyyxxydx202222223coscossincossincosdttbattatatta=ba1212=解)Ldzzyxxdyydx2022222sincoscossindttbtabtabtata=2022222sincoscossindttbtab

12、tabtata=222ab=)Ldzzyxxdyydx20dttabab2=注注:这里不同路径积分值不同 例例6 计算曲线积分LdzyxdyxzdxzyI)()()(222222则 LdzyxdyxzdxzyI)()()(2222221)()()(3222222Ldzyxdyxzdxzy1)()()(3222222Ldzyxdyxzdxzy1223Ldyxdxy4)1(3)1(3102012dyydxx或 LdzyxdyxzdxzyI)()()(222222Ldxzy)(322 312)(322LLLdxzy132233LLdxzdxy4)1(3)1(3102012dxxdxx注注1 这里利用

13、轮换对称性使计算化简,都是写为某积分的3倍.它们的区别在于LdzyxdyxzdxzyI)()()(2222221)(922LdxzyLdxzy)(220,22)(yLdxzy0,220)(yLdxzy同理 Ldzyx)(220,22)(yLdzyx0)(0,22yLdzyx故 LdzyxdyxzdxzyI)()()(222222Ldyxz)(22方法方法1 利用球面的参数方程sincosax sinsinay cosaz 2cosax cossinay|sin|az LdyxzI)(222/2/22422)sin(coscossindaa2/2/22422)sin(coscossindaa02

14、/2423)1cos2(coscos1 2da2/06423)cos2coscos31(2da3322246352224343212aa注注2 这里利用对称性(不是轮换对称性),立即可知前两项的积分为0.值得注意的是第二型的曲线积分与第一型的曲线积分对称性的应用是不同的.Ldxzy)(220,22)(yLdxzy0,220)(yLdxzy上面等式中,两项恰好相差一个符号,负号的出现是由于方向相反产生的.方法方法2 利用柱面的参数方程 cos22aaxsin2ay 代入球面方程 2222azyxcos22aaxsin2ay|2sin|az 取方法2中的参数方程进行计算略.四、小结1、对坐标曲线积

15、分的概念、对坐标曲线积分的概念2、对坐标曲线积分的计算、对坐标曲线积分的计算3、两类曲线积分之间的联系、两类曲线积分之间的联系思考题思考题 当当曲曲线线L的的参参数数方方程程与与参参数数的的变变化化范范围围给给定定之之后后(例例如如L:taxcos,taysin,2,0 t,a是是正正常常数数),试试问问如如何何表表示示L的的方方向向(如如L表表示示为为顺顺时时针针方方向向、逆逆时时针针方方向向)?思考题解答思考题解答曲线方向由参数的变化方向而定曲线方向由参数的变化方向而定.例如例如L:taxcos,taysin,2,0 t中中当当t从从 0 变变到到 2时时,L取取逆逆时时针针方方向向;反反之之当当t从从 2变变到到 0 时时,L取取顺顺时时针针方方向向.

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 高中 > 数学 > 其他
版权提示 | 免责声明

1,本文(江苏大数学分析-20-2第二型曲线积分课件.ppt)为本站会员(ziliao2023)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!


侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|