2025高考数学一轮复习-7.5-空间直线、平面的垂直行-专项训练(含答案).docx

上传人(卖家):znzjthk 文档编号:8221894 上传时间:2025-01-12 格式:DOCX 页数:12 大小:409.65KB
下载 相关 举报
2025高考数学一轮复习-7.5-空间直线、平面的垂直行-专项训练(含答案).docx_第1页
第1页 / 共12页
2025高考数学一轮复习-7.5-空间直线、平面的垂直行-专项训练(含答案).docx_第2页
第2页 / 共12页
2025高考数学一轮复习-7.5-空间直线、平面的垂直行-专项训练(含答案).docx_第3页
第3页 / 共12页
2025高考数学一轮复习-7.5-空间直线、平面的垂直行-专项训练(含答案).docx_第4页
第4页 / 共12页
2025高考数学一轮复习-7.5-空间直线、平面的垂直行-专项训练(含答案).docx_第5页
第5页 / 共12页
点击查看更多>>
资源描述

1、2025高考数学一轮复习-7.5-空间直线、平面的垂直行-专项训练【A级基础巩固】1已知平面和直线l有交点,则“直线l与平面垂直”是“平面内存在两条夹角为30的直线m,n,使得ml且nl”的()A充分不必要条件B必要不充分条件C充要条件D既不充分也不必要条件2如图,在下列四个正方体中,A,B为正方体的两个顶点,M,N,Q为所在棱的中点,则在这四个正方体中,直线AB与平面MNQ不垂直的是()3如图所示,已知四边形ABCD是由一个等腰直角ABC和一个有一内角为30的直角三角形ACD拼接而成,将ACD绕AC边旋转的过程中,下列结论中不可能成立的是()ACDABBBCADCBDAB DBCCD4(多选

2、)四棱台ABCDA1B1C1D1的底面ABCD是正方形,AA1平面ABCD,则下列结论正确的是()A直线AD与直线B1D1所成的角为45B直线AA1与直线CC1异面C平面ABB1A1平面ADD1A1DCA1AD5如图所示是一个正方体的平面展开图,则在该正方体中,棱_所在的直线与棱AB所在的直线是异面直线且互相垂直(注:填上你认为正确的一条棱即可,不必考虑所有可能的情况)6已知ABC在平面内,A90,DA平面,则直线CA与DB的位置关系是_7如图,在四棱锥PABCD中,PA平面ABCD,底面ABCD为菱形,E为CD的中点(1)求证:BD平面PAC;(2)若ABC60,求证:平面PAB平面PAE.

3、【B级能力提升】1(多选)如图,在正方体中,O为底面的中心,P为所在棱的中点,M,N为正方体的顶点,则满足MNOP的是()2(多选)在三棱锥DABC中,已知ABBC2,AC2,DB4,平面BCD平面ABC,且DBAB,则()ADBACB平面DAB平面ABCC三棱锥DABC的体积为D三棱锥DABC的外接球的表面积为163如图所示,在四棱锥PABCD中,PA底面ABCD,且底面各边都相等,M是PC上的一动点,当点M满足_时,平面MBD平面PCD(只要填写一个你认为是正确的条件即可).4已知正方体ABCDA1B1C1D1的棱AA1的中点为E,AC与BD交于点O,平面过点E,且与直线OC1垂直若AB1

4、,则平面截该正方体所得截面图形的面积为_5在如图所示的五面体ABCDEF中,四边形ABCD为菱形,且DAB60,EAEDAB2EF2,EFAB,M为BC的中点(1)求证:FM平面BDE;(2)若平面ADE平面ABCD,求点F到平面BDE的距离参考答案【A级基础巩固】1解析:若直线l与平面垂直,则l垂直内的任意一条直线,若平面内存在两条夹角为30的直线m,n,则lm且ln,故充分性成立;若平面内存在两条夹角为30的直线m,n,使得ml且nl,由线面垂直的判定定理可知直线l与平面垂直,故必要性成立,所以“直线l与平面垂直”是“平面内存在两条夹角为30的直线m,n,使得ml且nl”的充要条件答案:C

5、2解析:对于A选项,如图,因为M,N,Q为所在棱的中点,故由正方体的性质易得BB1AB,CDAB,MQCD,MNBB1,所以MQAB,MNAB,且MQMNM,MQ,MN平面MNQ,故AB平面MNQ,故A选项不符合题意;对于B选项,如图,因为M,N,Q为所在棱的中点,所以MNCD,MQA1C,由正方体的性质得AB1CD,CDBB1,且AB1BB1B1,AB1,BB1平面ABB1,所以CD平面ABB1.又AB平面ABB1,故CDAB,所以MNAB,同理得MQAB.又MNMQM,MN,MQ平面MNQ,故AB平面MNQ,故B选项不符合题意;对于C选项,如图,因为M,N,Q为所在棱的中点,所以MNA1B

6、1,ACA1B1,则MNAC.在ABC中,AB与AC的夹角为,故异面直线MN与AB所成的角为,故AB平面MNQ不成立,故C选项符合题意;对于D选项,同A选项,可判断AB平面MNQ.答案:C3解析:对于A,D,当平面ADC平面ABC时,因为CDAC,平面ADC平面ABCAC,所以CD平面ABC.又AB平面ABC,BC平面ABC,所以CDAB,CDBC,故A,D可能成立;对于C,假设DCa,则AD2a,ACa,BCABa,连接BD(图略).在BCD中,由余弦定理得BDaa,则在旋转过程中,存在某一时刻满足BDa,此时BD2AB2AD2,BDAB.故C可能成立;利用排除法可知选项中不成立的结论为B项

7、答案:B4解析:对于A,如图,连接BD,则BDB1D1,则直线AD与直线BD所成的角即为直线AD与直线B1D1所成角在正方形ABCD中,ADB45,故直线AD与直线B1D1所成的角为45,故A正确;对于B,由于棱台的侧棱延长后会交于同一点,故直线AA1与直线CC1是相交直线,故B错误;对于C,由AA1平面ABCD,AB平面ABCD,所以AA1AB.又ABAD,且AA1ADA,AA1,AD平面ADD1A1,故AB平面ADD1A1,而AB平面ABB1A1,故平面ABB1A1平面ADD1A1,故C正确;对于D,如图,连接AC,由题意知ACBD.因为AA1平面ABCD,BD平面ABCD,所以BDAA1

8、,且AA1ACA,AA1,AC平面AA1C,所以BD平面AA1C,CA1平面AA1C,故BDCA1.若CA1AD,而ADBDD,AD,BD平面ABCD,所以CA1平面ABCD,显然不成立,故AD不可能垂直于CA1,故D错误答案:AC5解析:如图,结合平面图形还原出正方体,结合正方体性质易知,棱CG,DH,EH,FG所在的直线与棱AB所在的直线是异面直线且互相垂直答案:CG,DH,EH,FG(任选一个作答)6解析:DA平面,CA平面,DACA.在ABC中,A90,ABCA,且DAABA,DA,AB平面DAB,CA平面DAB.又DB平面DAB,CADB.答案:垂直7证明:(1)因为PA平面ABCD

9、,BD平面ABCD,所以PABD.因为底面ABCD为菱形,所以BDAC.又PAACA,PA,AC平面PAC,所以BD平面PAC.(2)因为PA平面ABCD,AE平面ABCD,所以PAAE.因为底面ABCD为菱形,ABC60,且E为CD的中点,所以AECD.所以ABAE.又ABPAA,AB,PA平面PAB,所以AE平面PAB.因为AE平面PAE,所以平面PAB平面PAE.【B级能力提升】1解析:设正方体的棱长为2.对于A,如图(1)所示,连接AC,则MNAC,故POC(或其补角)为异面直线OP,MN所成的角在直角OPC中,OC,CP1,故tan POC,故MNOP不成立,故A错误;对于B,如图(

10、2)所示,取MT的中点为Q,连接PQ,OQ,则OQMN,PQMN,OQ,PQ平面OPQ,所以MN平面OPQ.又OP平面OPQ,故MNOP,故B正确;对于C,如图(3),连接BD,则BDMN,由B的判断可得OPBD,故OPMN,故C正确;对于D,如图(4),取AD的中点Q,AB的中点K,连接AC,PQ,OQ,PK,OK,则ACMN.因为DPPC,故PQAC,故PQMN,所以QPO(或其补角)为异面直线PO,MN所成的角因为正方体的棱长为2,故PQAC,OQ,PO,QO2PQ2OP2,故QPO不是直角,故PO,MN不垂直,故D错误答案:BC2解析:因为ABBC2,AC2,所以cos ABC,所以A

11、BC.如图,过D作DEBC于E.因为平面BCD平面ABC,平面BCD平面ABCBC,所以DE平面ABC.因为AB平面ABC,所以DEAB.假设DB,DE不重合,因为DBAB,DEDBD,DE,DB平面BCD,所以AB平面BCD.因为BC平面BCD,所以ABBC,与ABC矛盾,所以假设不成立,所以DB,DE重合,即DB平面ABC.因为AC平面ABC,所以DBAC.因为DB平面DAB,所以平面DAB平面ABC,故A,B正确;三棱锥DABC的体积为22sin 4,故C正确;如图,设ABC的外心为F,其外接圆半径为2,过F作FO平面ABC,设O为外接球的球心,则FAFB2,OAOD,所以,所以,解得O

12、F2,所以外接球的半径为OA2,所以三棱锥DABC的外接球的表面积为S4OA232,故D错误答案:ABC3解析:连接AC,BD,则ACBD.因为PA底面ABCD,BD平面ABCD,所以PABD.又PAACA,PA,AC平面PAC,所以BD平面PAC,PC平面PAC,所以BDPC.所以当DMPC(或BMPC)时,有PC平面MBD.又PC平面PCD,所以平面MBD平面PCD.答案:DMPC(或BMPC)4解析:如图所示,在正方体ABCDA1B1C1D1中,E为棱AA1的中点,AB1,则OCCCOC21,OE2OA2AE2,ECA1CA1E22,OCOE2EC,OEOC1.又BD平面ACC1A1,O

13、C1平面ACC1A1,BDOC1,且OEBDO,OC1平面BDE,且SBDEBDOE,即平面截该正方体所得截面图形的面积为.答案:5(1)证明:取BD的中点O,连接OM,OE.因为O,M分别为BD,BC的中点,所以OMCD,且OMCD.因为四边形ABCD为菱形,所以CDAB,又EFAB,所以CDEF.又ABCD2EF,所以EFCD,所以OMEF,且OMEF,所以四边形OMFE为平行四边形,所以MFOE.又OE平面BDE,MF平面BDE,所以MF平面BDE.(2)解:由(1)得FM平面BDE,所以点F到平面BDE的距离等于点M到平面BDE的距离取AD的中点H,连接EH,BH,因为EAED,四边形ABCD为菱形,且DAB60,所以EHAD,BHAD.因为平面ADE平面ABCD,平面ADE平面ABCDAD,EH平面ADE,所以EH平面ABCD.因为BH平面ABCD,所以EHBH.因为EHBH,所以BE,所以SBDE.设点F到平面BDE的距离为h,连接DM,则SBDMSBCD4.连接EM,由V三棱锥EBDMV三棱锥MBDE,得h,解得h,即点F到平面BDE的距离为

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 高中 > 数学 > 高考专区 > 一轮复习
版权提示 | 免责声明

1,本文(2025高考数学一轮复习-7.5-空间直线、平面的垂直行-专项训练(含答案).docx)为本站会员(znzjthk)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!


侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|