高中数学必修三:知识点.doc

上传人(卖家):青草浅笑 文档编号:1002182 上传时间:2021-01-06 格式:DOC 页数:11 大小:712KB
下载 相关 举报
高中数学必修三:知识点.doc_第1页
第1页 / 共11页
高中数学必修三:知识点.doc_第2页
第2页 / 共11页
高中数学必修三:知识点.doc_第3页
第3页 / 共11页
高中数学必修三:知识点.doc_第4页
第4页 / 共11页
高中数学必修三:知识点.doc_第5页
第5页 / 共11页
点击查看更多>>
资源描述

1、 1 必修必修 3:知识点知识点 一:算法初步一:算法初步 1:算法的概念:算法的概念 (1)算法概念:通常是指可以用计算机来解决的某一类问题是程序或步骤,这些程序或步骤必须是明确和有效的, 而且能够在有限步之内完成. (2)算法的特点: 有限性有限性:一个算法的步骤序列是有限的,必须在有限操作之后停止,不能是无限的. 确定性确定性:算法中的每一步应该是确定的并且能有效地执行且得到确定的结果。 顺序性与正确性顺序性与正确性:算法从初始步骤开始,分为若干明确的步骤,每一个步骤只能有一个确定的后继步骤, 前一步是后一步的前提,只有执行完前一步才能进行下一步,并且每一步都准确无误,才能完成问题. 不

2、唯一性不唯一性:求解某一个问题的解法不一定是唯一的,但是答案是唯一的。 普遍性普遍性:很多具体的问题,都可以设计合理的算法去解决。 2: 程序框图程序框图 (1)程序框图基本概念: 程序构图的概念:程序框图又称流程图,是一种用规定的图形、指向线及文字说明来准确、直观地表示算法的图 形。 一个程序框图包括以下几部分:表示相应操作的程序框;带箭头的流程线;程序框外必要文字说明。 构成程序框的图形符号及其作用 程序框 名称 功能 起止框 表示一个算法的起始和结束,是任何流程图不可少 的。 输入、输出框 表示一个算法输入和输出的信息,可用在算法中任 何需要输入、输出的位置。 处理框 赋值、计算,算法中

3、处理数据需要的算式、公式等 分别写在不同的用以处理数据的处理框内。 判断框 判断某一条件是否成立, 成立时在出口处标明 “是” 或“Y” ;不成立时标明“否”或“N” 。 学习这部分知识的时候,要掌握各个图形的形状、作用及使用规则,画程序框图的规则如下: 1、使用标准的图形符号。 2、框图一般按从上到下、从左到右的方向画。 3、除判断框外,大多数流程图符号只有一个进入点和一个退出点。判断框具有超过一个退出点的唯一符号。 4、判断框分两大类,一类判断框“是”与“否”两分支的判断,而且有且仅有两个结果;另一类是多分支判断, 有几种不同的结果。 5、在图形符号内描述的语言要非常简练清楚。 满足条件?

4、 语句 否 满足条件? 语句 1 语句 2 是 否 2 3:算法的三种基本逻辑结构:顺序结构、条件结构、循环结构。 (1)顺序结构: 顺序结构在程序框图中的体现就是用流程线将程序框自上而下地连接起来, 按顺序执行算法步骤。如在示意图中,A 框和 B 框是依次执行的,只有在 执行完 A 框指定的操作后,才能接着执行 B 框所指定的操作。 (2)条件结构:条件结构是指在算法中通过对条件的判断根据条件是否成立而选择不同流向的 算法结构。 条件 P 是否成立而选择执行 A 框或 B 框。无论 P 条件是否成立,只能执行 A 框或 B 框之一,不可能同时执行。 (3)循环结构:在一些算法中,经常会出现从

5、某处开始,按照一定条件,反复执行某一处理步骤的情况,这就是 循环结构,反复执行的处理步骤为循环体,显然,循环结构中一定包含条件结构。循环结构又称重复结构,循环结 构可细分为两类: 一类是当型循环结构,如下左图所示,它的功能是当给定的条件 P 成立时,执行 A 框,A 框执行完毕后, 再判断条件 P 是否成立,如果仍然成立,再执行 A 框,如此反复执行 A 框,直到某一次条件 P 不成立为止, 此时不再执行 A 框,离开循环结构。 另一类是直到型循环结构,如下右图所示,它的功能是先执行,然后判断给定的条件 P 是否成立,如果 P 仍 然不成立,则继续执行 A 框,直到某一次给定的条件 P 成立为

6、止,此时不再执行 A 框,离开循环结构。 当型循环结构 直到型循环结构 注意:注意:1 循环结构要在某个条件下终止循环,这就需要条件结构来判断。 2 在循环结构中都有一个计数变量和累加变量。计数变量用于记录循环次数,累加变量用于输出结果。 4:输入、输出语句和赋值语句:输入、输出语句和赋值语句 (1)输入语句)输入语句 输入语句的一般格式 输入语句的作用是实现算法的输入信息功能;“提示内容”提示用户输入什么样的信息,变量是指程序在运行 时其值是可以变化的量;输入语句要求输入的值只能是具体的常数,不能是函数、变量或表达式;提示内容与 变量之间用分号“; ”隔开,若输入多个变量,变量与变量之间用逗

7、号“, ”隔开。 (2)输出语句输出语句 输出语句的一般格式 输出语句的作用是实现算法的输出结果功能; “提示内容”提示用户输入什么样的信息,表达式是指程序要 输出的数据;输出语句可以输出常量、变量或表达式的值以及字符。 (3)赋值语句)赋值语句 赋值语句的一般格式 赋值语句的作用是将表达式所代表的值赋给变量;赋值语句中的“”称作赋值号,与数学中的等号的意义是 A B p 否 P 是 A A 是 否 P 3 不同的。赋值号的左右两边不能对换,它将赋值号右边的表达式的值赋给赋值号左边的变量;赋值语句左边只能 是变量名字,而不是表达式,右边表达式可以是一个数据、常量或算式;对于一个变量可以多次赋值

8、。 注意:注意:赋值号左边只能是变量名字,而不能是表达式。如:2=X 是错误的。 赋值号左右不能对换。如“A=B” “B=A”的含义运行结果是不同的。 不能利用赋值语句进行代数式的演算。 (如化简、因式分解、解方程等) 。 赋值号“=”与数学中的等号意义不同。 5:条件语句:条件语句 (1)条件语句的一般格式有两种:IFTHENELSE 语句;IFTHEN 语句。 IFTHENELSE 语句 IFTHENELSE 语句的一般格式为图 1,对应的程序框图为图 2。 图 1 图 2 分析:在 IFTHENELSE 语句中, “条件”表示判断的条件, “语句 1”表示满足条件时执行的操作内容; “语

9、句 2”表示不满足条件时执行的操作内容;END IF 表示条件语句的结束。计算机在执行时,首先对 IF 后的条件进行 判断,如果条件符合,则执行 THEN 后面的语句 1;若条件不符合,则执行 ELSE 后面的语句 2。 IFTHEN 语句 IFTHEN语句的一般格式为图3, 对应的程序框图为图4。 注意:注意: “条件”表示判断的条件; “语句”表示满足条件时执行的操作内容, 条件不满足时,结束程序;END IF 表示条件语句的结束。计算机在执行时首先对 IF 后的条件进行判断,如果条 件符合就执行 THEN 后边的语句,若条件不符合则直接结束该条件语句,转而执行其它语句。 6:循环语句:循

10、环语句 循环结构是由循环语句来实现的。对应于程序框图中的两种循环结构,一般程序设计语言中也有当型(WHILE 型)和直到型(UNTIL 型)两种语句结构。即 WHILE 语句和 UNTIL 语句。 (1)WHILE 语句语句 WHILE 语句的一般格式是 对应的程序框图是 当计算机遇到 WHILE 语句时,先判断条件的真假,如果条件符合,就执行 WHILE 与 WEND 之间的循环体; 然后再检查上述条件,如果条件仍符合,再次执行循环体,这个过程反复进行,直到某一次条件不符合为止。这 IF 条 件 THEN 语句 1 ELSE 否 是 满足条件? 语句 1 语句 2 IF 条件 THEN 语句

11、 END IF (图 3) 满 足 条 语 是 否 ( 图 WHILE 条件 循环体 WEND 满足条件? 循环 否 是 4 时,计算机将不执行循环体,直接跳到 WEND 语句后,接着执行 WEND 之后的语句。因此,当型循环有时也称 为“前测试型”循环。 (2)UNTIL 语句语句 UNTIL 语句的一般格式是 对应的程序框图是 直到型循环,从 UNTIL 型循环结构分析,计算机执行该语句时,先执行一次循环体,然后进行条件的判断,如 果条件不满足,继续返回执行循环体,然后再进行条件的判断,这个过程反复进行,直到某一次条件满足时, 不再执行循环体,跳到 LOOP UNTIL 语句后执行其他语句

12、,是先执行循环体后进行条件判断的循环语句。 分析:分析:当型循环与直到型循环的区别: (1) 当型循环先判断后执行,直到型循环先执行后判断; (2)在 WHILE 语句中,是当条件满足时执行满足时执行循环体;在 UNTIL 语句中,是当条件不满足时执行不满足时执行循环。 (例如:上课 时间睡觉,下课不睡觉) 7:辗转相除法与更相减损术:辗转相除法与更相减损术 (1)辗转相除法。用辗转相除法求最大公约数的步骤如下: 用较大的数 m 除以较小的数 n 得到一个商 0 S 和一个余数 0 R ; 若 0 R 0,则 n 为 m,n 的最大公约数;若 0 R 0,则用除数 n 除以余数 0 R 得到一

13、个商 1 S 和一个余数 1 R ; 若 1 R 0, 则 1 R 为 m, n 的最大公约数; 若 1 R 0, 则用除数 0 R 除以余数 1 R 得到一个商 2 S 和一个余数 2 R ; 依次计算直至 n R 0 0,此时所得到的 1n R 即为所求的最大公约数。 (2)更相减损术 任意给出两个正数;判断它们是否都是偶数。若是,用 2 约简;若不是,执行第二步。 以较大的数减去较小的数,接着把较小的数与所得的差比较,并以大数减小数。继续这个操作,直到所得 的数相等为止,则这个数(等数)就是所求的最大公约数。 98 和 63: 98-63=35 63-35=28 35-28=7 28-7

14、=21 21-7=14 14-7=7 8:秦九韶算法:秦九韶算法 (1)秦九韶算法概念: f(x)=anxn+an-1xn-1+.+a1x+a0求值问题 f(x)=anxn+an-1xn-1+.+a1x+a0 =( anx n-1+a n-1x n-2+.+a 1)x+a0 =( anx n-2+a n-1x n-3+.+a 2)x+a1)x+a0 满 足 条 循 环 是 否 DO 循环体 LOOP UNTIL 条件 5 =. =(.( anx+an-1)x+an-2)x+.+a1)x+a0 求多项式的值时, 首先计算最内层括号内依次多项式的值, 即 v1=anx+an-1然后由内向外逐层计算

15、一次多项式的值, 即 v2=v1x+an-2 v3=v2x+an-3 . vn=vn-1x+a0 这样,把 n 次多项式的求值问题转化成求 n 个一次多项式的值的问题。 9:进位制:进位制 (1 1)概念:进位制概念:进位制是一种记数方式,用有限的数字在不同的位置表示不同的数值。可使用数字符号的个数称为基 数,基数为 n,即可称 n 进位制,简称 n 进制。现在最常用的是十进制,通常使用 10 个阿拉伯数字 0-9 进行记 数。对于任何一个数,我们可以用不同的进位制来表示。比如:十进数 57,可以用二进制表示为 111001,也 可以用八进制表示为 71、用十六进制表示为 39,它们所代表的数

16、值都是一样的。 一般地,若 k 是一个大于 1 的整数,那么以 k 为基数的 k 进制可以表示为: 110( )110 .(0,0,.,) nnknn a aaaakaa ak , 而表示各种进位制数一般在数字右下脚加注来表示,如 111001(2)表示二进制数,34(5)表示 5 进制数. (2)(2)k k 进制转化为十进制公式:进制转化为十进制公式: 二进制 )(2 110011化为十进制 )(2 110011 012345 212120202121=51 (3)(3)十进制转化为十进制转化为 k k 进制:除进制:除 k k 取余法取余法 注:注:k 进制数之间的转化,首先转化成十进制

17、首先转化成十进制,再转化为其他进制数。 二:统计二:统计 1:简单随机抽样:简单随机抽样 (1)总体和样本 在统计学中 , 把研究对象的全体叫做总体把每个研究对象叫做个体把总体中个体的总数叫做总体容量 为了研究总体的有关性质,一般从总体中随机抽取一部分:, , , 研究,我们称它为样本其 中个体的个数称为样本容量 (2)简单随机抽样。特点是:每个样本单位被抽中的可能性相同(概率相等) ,样本的每个单位完全独立,彼此间 无一定的关联性和排斥性。简单随机抽样是其它各种抽样形式的基础。通常只是在总体单位之间差异程度较小和总体单位之间差异程度较小和 数目较少数目较少时,才采用这种方法。 110( )

18、110 110(10) nnk nn nn a aa a akakakak 6 (3)简单随机抽样常用的方法: 抽签法 随机数表法 ( 计算机模拟法 使用统计软件直接抽取。) (4)抽签法步骤: 抽签法: 给总体中所有个体编号(号码可以从 1 到 n) 将 1 到 n 这 n 个号码写在形状、大小都相同的好签上 将好签放在一个容器中,搅拌均匀 每次从容器中不放回地抽取一个好签,并记录其编号,连续抽取 x 次 从总体中,将与抽到的号签编号一致的个体取出 (5)随机数法(利用随机数表编号) : 将总体中的每个个体编号 在随机数表中任选一个数作为开始的数 从选定的数开始按一定的方向(可以向右、向左、

19、向上、向下)读数,得到的 号码若不在编号中则跳过,若在编号中则取出,如果得到的号码前面已取出则 跳过,如此继续下去,直到取满为止 把选定的号码所对应的 n 个个体作为样本 2:系统抽样:系统抽样 (1)系统抽样(等距抽样) : 系统抽样的步骤: 将总体的 N 个个体编号; 确定分段间隔 k,对编号进行分段,当 N/n 是整数时,取 k=N/n; 在第一段用简单随机抽样确定第一个个体编号 m(mk) 按照一定的规则抽取个体,即:将 m 加上间隔 k 得到第二个个体编号(m+k),以此类推。 制签 编号 搅拌 抽签 取样 编号 定初值 选号 取样 7 3:分层抽样:分层抽样 (1)分层抽样(类型抽

20、样) : 先将总体中的所有单位按照某种特征或标志(性别、年龄等)划分成若干类型或层次层次,然后按比例按比例在各个类型 或层次中采用简单随机抽样或系用抽样的办法抽取一个子样本抽取一个子样本,最后,将这些子样本合起来子样本合起来构成总体的样本。 例如:高年级与低年级分开,男女分开. (2)分层的比例问题:抽样比= 样本容量各层样本容量 个体容量各层个体容量 简单随机抽样、系统抽样和分层抽样简单随机抽样、系统抽样和分层抽样三种抽样的类比学习三种抽样的类比学习 适应范围适应范围相互联系相互联系抽样特征抽样特征 共同共同 特点特点 方法方法 类别类别 适应范围适应范围相互联系相互联系抽样特征抽样特征 共

21、同共同 特点特点 方法方法 类别类别 简单随简单随 机抽样机抽样 系统系统 抽样抽样 分层分层 抽样抽样 抽样过抽样过 程中每程中每 个个体个个体 被抽取被抽取 的概率的概率 相等相等 将总体分成将总体分成 均衡几部均衡几部 分,按规则分,按规则 关联抽取关联抽取 将总体分将总体分 成几层,成几层, 按比例分按比例分 层抽取层抽取 用简单随用简单随 机抽样抽机抽样抽 取起始号取起始号 码码 总体中总体中 的个体的个体 数较少数较少 总体中总体中 的个体的个体 数较多数较多 总体由总体由 差异明差异明 显的几显的几 部分组部分组 成成 从总体中从总体中 逐个不放逐个不放 回抽取回抽取 用简单随用

22、简单随 机抽样或机抽样或 系统抽样系统抽样 对各层抽对各层抽 样样 4:用样本的数字特征估计总体的数字:用样本的数字特征估计总体的数字特征特征 (1)知道具体数据情况下求以下数值的方法:)知道具体数据情况下求以下数值的方法: 样本均值: n xxx x n 21 样本标准差: n xxxxxx ss n 22 2 2 12 )()()( ;方差: 2 s 众数:在样本数据中,频率分布最大值所对应的样本数据(可以是多个) 。 中位数:在样本数据中,累计频率为 0.5 时所对应的样本数据值(只有一个) 。 (2)观察频率分布直方图(不知道具体数据)时求以下数值的方法:观察频率分布直方图(不知道具体

23、数据)时求以下数值的方法: 样本众数:直方图中最高小长方形下端中点的横坐标的值。 中位数中位数:第一步,根据直方图先求出各个小长方形的面积, (面积=频率,总面积为 1) ; 第二步,确定中位数在哪个小长方形里(中位数平分面积,两边各 0.5) ; 第三步,设中位数为 x,则利用中位数平分面积,左边面积和为 0.5 列方程; 第四步,解方程,求出 x。 平均数:第一步,根据直方图先求出各个小长方形的面积, (面积=频率,总面积为 1) ; 第二步,求出每个小长方形的底边中点的横坐标。 第三步,面积与横坐标对应相乘 第四步,把第三步的结果相加,最终算出的数值即为平均数。 8 5:用样本的频率分布

24、估计总体分布用样本的频率分布估计总体分布 1:画出频率分布表与频率分布直方图 频率分布表和频率分布直方图,是从各个小组数据在样本容量中所占比例大小的角度,来表示数据分布规律,它 可以使我们看到整个样本数据的频率分布情况。 具体步骤如下: 第一步:求极差,即计算最大值与最小值的差. 第二步:决定组距和组数:组距与组数的确定没有固定标准,需要尝试、选择,力求有合适的组数,以能把数 据的规律较清楚地呈现为准.太多或太少都不好,不利对数据规律的发现.组数应与样本的容量有关, 样本容量越大组数越多.一般来说,容量不超过 100 的组数在 5 至 12 之间.组距应最好“取整” ,它与 组距 极差 有关.

25、 注意:组数的“取舍”不依据四舍五入,而是当 组距 极差 不是整数时,组数= 组距 极差 +1. 频率分布折线图 :连接频率分布直方图中各个小长方形上端的重点,就得到频率分布折线图。 总体密度曲线:总体密度曲线反映了总体在各个范围内取值的半分比,它能给我们提供更加精细的信息。 例如:为了了解某地区高三学生的身体发育情况,抽查了地区内 100 名年龄为 17.518 岁的男生的体重情况,结果 如下(单位:kg). 56.5 69.5 65 61.5 64.5 76 71 66 63.5 56 66.5 64 64.5 76 58.5 59.5 63.5 65 70 74.5 72 73.5 56

26、 67 70 68.5 64 55.5 72.5 66.5 57.5 65.5 68 71 75 68 76 57.5 60 71.5 62 68.5 62.5 66 59.5 57 69.5 74 64.5 59 63.5 64.5 67.5 73 68 61.5 67 68 63.5 58 55 72 66.5 74 63 59 65.5 62.5 69.5 72 60 55.5 70 64.5 58 64.5 75.5 68.5 64 62 64 70.5 57 62.5 65 65.5 58.5 67.5 70.5 65 69 71.5 73 62 58 66 66.5 70 63 5

27、9.5 试根据上述数据画出样本的频率分布直方图,并对相应的总体分布作出估计. 解:按照下列值的差 (1)求最大值与最小计.在上述数据中,最大值是 76,最小值是 55,极差是 7655=21. (2)确定组距与组数.如果将组距定为 2,那么由 212=10.5,组数为 11,这个组数适合的.于是组距为 2,组数为 11. (3)决定分点.根据本例中数据的特点,第 1 小组的起点可取为 54.5,第 1 小组的终点可取为 56.5,为了避免一个 数据既是起点,又是终点从而造成重复计算,我们规定分组的区间是“左闭右开左闭右开”的.这样,所得到的分组是 54.5,56.5) , 56.5,58.5)

28、 , 74.5,76.5). (4)列频率分布表.(频率频率=频数频数 样本总数样本总数) 分组 频数 频率 频率/组距 54.5,56.5) 2 0.02 0.01 56.5,58.5) 6 0.06 0.03 58.5,60.5) 10 0.10 0.05 60.5,62.5) 10 0.10 0.05 62.5,64.5) 14 0.14 0.07 64.5,66.5) 16 0.16 0.08 66.5,68.5) 13 0.13 0.065 9 68.5,70.5) 11 0.11 0.055 70.5,72.5) 8 0.08 0.04 72.5,74.5) 7 0.07 0.03

29、5 74.5,76.5) 3 0.03 0.015 合计 100 1.00 0.50 (5)绘制频率分布直方图. 频率分布直方如图 223 所示. 频 率 / 组 距 5 4 . 5 5 6 . 55 8 . 56 0 . 56 2 . 56 4 . 56 6 . 56 8 . 57 0 . 57 2 . 57 4 . 57 6 . 5体 重 频率/ 组距 频率/ 组距 5 4 . 5 5 6 . 55 8 . 56 0 . 56 2 . 56 4 . 56 6 . 56 8 . 57 0 . 57 2 . 57 4 . 5 0 . 0 7 0 . 0 6 0 . 0 5 0 . 0 4 0

30、. 0 3 0 . 0 2 0 . 0 1 0 体重 连接频率直方图中各小长方形上端的中点,就得到频率分布折线图. 2:茎叶图茎叶图:茎是指中间的一列数,叶是指从茎旁边生长出来的数。 例 2:某赛季甲、乙两名篮球运动员每场比赛得分情况如下 甲的得分:15,21,25,31,36,39,31,45,36,48,24,50,37; 乙的得分:13,16,23,25,28,33,38,14,8,39,51. 上述的数据可以用下图来表示, 中间数字表示得分的十位数, 两边数字分别表示两个人各场比赛得分的个位数. 甲 乙 0 8 5 1 3 6 4 4 5 1 2 3 5 8 7 6 9 1 6 1 3

31、 3 8 9 8 5 4 0 5 1 10 图 225 6:变量间的相关关系变量间的相关关系:变量 1 的变化对变量 2 的结果有影响,但不是“函数” ,只能确定是“正相关、负相关” , 则称“变量 1 与变量 2 具有相关关系” 。 (1)回归直线:根据变量的数据作出散点图,如果各点大致分布在一条直线的附近,就称这两个变量之间具有线 性相关的关系,这条直线叫做回归直线方程。 设已经得到具有线性相关关系的一组数据: 所要求的回归直线方程为: ybx a ,其中,a,b 是待定的系数。 常考常用:已知 b,求 a,再求当 x 等于某数值时,y 的取值。 解法:计算 x 的平均数和 y 的平均数;

32、 由回归直线过的样本中心点( , ) x y ,将 x 的平均数和 y 的平均数对应代入回归方程,求出 a; 当 a、b 确定后,回归方程就是已知方程,只需将 x 的值代入方程,就可求出 y;同理,将已知的 y 的值代入,也 可以求出 x。 三:概三:概 率率 1:随机事件的概率及概率的意义:随机事件的概率及概率的意义 (1)必然事件:在条件 S 下,一定会发生的事件,叫相对于条件 S 的必然事件; (2)不可能事件:在条件 S 下,一定不会发生的事件,叫相对于条件 S 的不可能事件; (3)随机事件:在条件 S 下可能发生也可能不发生的事件,叫相对于条件 S 的随机事件; (4)频数与频率:

33、在相同的条件 S 下重复 n 次试验,观察某一事件 A 是否出现,称 n 次试验中事件 A 出现的次数 A n为事件 A 出现的频数;称事件 A 出现的比例( ) A n n fA n 为事件 A 出现的频率。 (频率频率=频数频数 样本总数样本总数) (5)当试验的次数越多时,频率就越接近一个稳定值,这个稳定值我们称之为“概率” ,即频率可看成概率的近似 值。 2:概率的基本性质:概率的基本性质 (1)必然事件概率为 1,不可能事件概率为 0,因此 0P(A)1 (2)事件的关系有:包含、并事件、交事件、相等事件 (3)若 AB 为不可能事件,即 AB=,那么称事件 A 与事件 B 互斥;

34、(4)若 AB 为不可能事件,AB 为必然事件为必然事件,那么称事件 A 与事件 B 互为对立事件; 所以:对立事件一定是互斥事件。 (5)当事件 A 与 B 互斥互斥时,满足加法公式:P(AB)= P(A)+ P(B);若某事件的结果有 k 种可能,则这 k 种可能的 概率之和为 1. 若事件 A 与 B 为对立对立事件,则 AB 为必然事件,所以 P(AB)= P(A)+ P(B)=1,于是有 P(A)=1P(B)。 (6)互斥事件与对立事件的区别与联系,互斥事件是指事件 A 与事件 B 在一次试验中不会同时发生,其具体包括 三种不同的情形: (1)事件 A 发生且事件 B 不发生; (2

35、)事件 A 不发生且事件 B 发生; (3)事件 A 与事件 B 同时 x 1 x 。 n x y 1 y 。 n y 11 不发生,而对立事件是指事件 A 与事件 B 有且仅有一个发生,其包括两种情形; (1)事件 A 发生 B 不发生; (2) 事件 B 发生事件 A 不发生,对立事件互斥事件的特殊情形。 3:基本事件 (1)基本事件:基本事件是在一次试验中所有可能发生的基本结果中的一个,一次实验的所有可能的结果一一列 出,列出时做到不重复、不遗漏即可得出所有的基本事件。 (列出时可以画树状图,也可以按照一定规则和秩序一 一列出。 ) (2)基本事件的特点:任何两个基本事件是互斥的;任何事

36、件(除不可能事件外)都可以表示成基本事件的 和。 4:古典概型: (1)古典概型的条件:古典概型是一种特殊的数学模型,这种模型满足两个条件: 试验结果的有限性和所有结果的等可能性。所有基本事件必须是有限个。 (2)古典概型的解题步骤; 求出总的基本事件数; 求出事件 A 所包含的基本事件数,然后利用公式 A ( )p A 所包含的基本事件的个数 总的基本事件个数 5:几何概型:几何概型 (1)几何概率模型:如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概 率模型为几何概率模型; (2)几何概型的概率公式: 积)的区域长度(面积或体试验的全部结果所构成 积)的区域长度(面积或体构成事件A Ap)(; (3)几何概型的特点:试验中所有可能出现的结果(基本事件)有无限多个;每个基本事件出现的可能性相 等 注意: 概率为 1 的事件不一定为必然事件;概率为 0 的事件不一定为不可能事件。

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 高中 > 数学 > 其他
版权提示 | 免责声明

1,本文(高中数学必修三:知识点.doc)为本站会员(青草浅笑)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!


侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|