1、圆周运动的临界问题圆周运动的临界问题 1 (多选)乘坐游乐园的过山车时, 质量为m的人随车在竖直平面内沿圆周轨道运动, 下列说法正确的是() A车在最高点时人处于倒坐状态,全靠保险带拉住,若没有保险带,人一定会掉下去 B人在最高点时对座位仍可能产生压力,但压力一定小于mg C人在最低点时处于超重状态 D人在最低点时对座位的压力大于mg 2. (多选)如图所示,长为l的轻杆,一端固定一个小球,另一端固定在光滑的水平轴上,使小球在竖直平面 内做圆周运动,小球过最高点的速度为v,下列叙述中正确的是() Av的值可以小于gl B当v由零逐渐增大时,小球在最高点所需向心力也逐渐增大 C当v由gl值逐渐增
2、大时,杆对小球的弹力逐渐增大 D当v由gl值逐渐减小时,杆对小球的弹力逐渐减小 3如图所示,OO为竖直转动轴,MN为固定在OO上的水平光滑杆,有两个质量相同的有孔金属球甲、乙套 在水平杆上,AC、BC为抗拉能力相同的两根细线,A、B端分别连接甲、乙两球,C端固定在转动轴OO上,当线 拉直时,甲、乙两球到转动轴距离之比为 21,当转动角速度逐渐增大时() AAC线先断BBC线先断 C两线同时断D不能确定哪段线先断 4如图所示,质量为m的滑块与轨道间的动摩擦因数为,在滑块从A滑到B的过程中,受到的摩擦力的最 大值为Ff,则() AFfmgBFfmgD无法确定Ff的值 5(多选)如图所示,小物块放于
3、半径为R的半球的顶端,若给小物块一水平的初速度v时小物块对半球刚好 无压力,则下列说法正确的是() A小物块立即离开球面做平抛运动 B小物块落地时水平位移为2R C小物块沿球面运动 D小物块落地时速度的方向与地面成 45角 6(多选)质量为m的小球由轻绳a和b分别系于一轻质木架上的A点和C点。如图所示,当轻杆绕轴BC以角 速度匀速转动时,小球在水平面内做匀速圆周运动,绳a在竖直方向,绳b在水平方向。当小球运动到图示位置 时,绳b被烧断的同时木架停止转动,则() A绳a对小球拉力不变 B绳a对小球拉力增大 C小球可能前后摆动 D小球不可能在竖直平面内做完整的圆周运动 7. 在光滑水平面上相距 2
4、0 cm 的两点钉上 A、B 两个钉子,一根长 1 m 的细绳一端系小球,另一端拴在 A 钉上, 如图所示。已知小球质量为 0.4 kg,某时刻小球开始从图示位置以 2 m/s 的速度做水平匀速圆周运动,若绳所能承 受的最大拉力为 3.2 N,则从开始运动到绳被拉断历时为() A2.4 sB1.4 sC1.2 sD0.9 s 8如图所示,一光滑的半径为R的半圆形轨道固定在水平面上,AB为半圆形轨道的竖直直径,一个质量为m 的小球以某一速度冲上轨道,当小球将要从轨道口飞出时,对轨道的压力恰好为零,则小球落地点C距A处多远? 9如图所示,小球 A 质量为m,固定在轻细直杆L的一端,并随杆一起绕杆的
5、另一端O点在竖直平面内做圆周 运动。如果小球经过最高点时,杆对球的拉力大小等于球的重力。重力加速度为g,求: (1)小球在最高点的速度大小; (2)当小球经过最低点时速度为 6gL,求杆对球作用力大小和向心加速度大小。 10如图所示,在光滑水平面上有质量为m1、m2的两个小球 1、2 用轻弹簧连接在一起,再用长为L1的细线一 端拴住球 1,一端拴在O点上,两球都以相同的角速度绕O点做匀速圆周运动,保证两球与O点三者始终在同一 直线上,若两球之间的距离为L2,试求细线的拉力以及将细线烧断的瞬间两球的加速度。 11如图所示,两绳AC、BC系着一个质量为m0.1 kg 的小球,AC绳长l2 m,两绳
6、都拉直时与竖直轴夹角 分别为 30与 45。问球的角速度满足什么条件时,两绳始终张紧?(g取 10 m/s 2) 12. 如图所示,水平转盘可绕竖直中心轴转动,盘上放着质量均为 1 kg 的 A、B 两个物块,物块之间用长为 1 m 的细线相连,细线刚好伸直且通过转轴中心O,A 物块与O点的距离为 0.4 m,物块可视为质点。A、B 与转盘间的 动摩擦因数均为 0.1,且认为最大静摩擦力等于滑动摩擦力,g取 10 m/s 2。 (1)当转盘至少以多大的角速度匀速转动时,细线上出现拉力? (2)当转盘以11 rad/s 的角速度匀速转动时,A、B 受到的摩擦力分别是多大? (3)当转盘至少以多大
7、的角速度匀速转动时,A、B 两个物块均会在转盘上滑动? 答案 1 (多选)乘坐游乐园的过山车时, 质量为m的人随车在竖直平面内沿圆周轨道运动, 下列说法正确的是() A车在最高点时人处于倒坐状态,全靠保险带拉住,若没有保险带,人一定会掉下去 B人在最高点时对座位仍可能产生压力,但压力一定小于mg C人在最低点时处于超重状态 D人在最低点时对座位的压力大于mg 答案CD 解析由圆周运动的临界条件知:当人在最高点vgR时,人对座位和保险带都无作用力;当vgR时,人 对座位有压力,当v 2gR时,压力大于mg,故 A、B 错误。人在最低点时有:FNmgmv 2 R ,FNmg,人处于超重 状态,故
8、C、D 正确。 2. (多选)如图所示,长为l的轻杆,一端固定一个小球,另一端固定在光滑的水平轴上,使小球在竖直平面 内做圆周运动,小球过最高点的速度为v,下列叙述中正确的是() Av的值可以小于gl B当v由零逐渐增大时,小球在最高点所需向心力也逐渐增大 C当v由gl值逐渐增大时,杆对小球的弹力逐渐增大 D当v由gl值逐渐减小时,杆对小球的弹力逐渐减小 答案ABC 解析细杆拉着小球在竖直平面内做圆周运动,在最高点的最小速度为零,故 A 正确。根据F向m v 2 l 知,速度 增大,向心力增大,故 B 正确。当vgl时,杆的作用力为零,当vgl时,杆的作用力表现为拉力,速度增大, 拉力增大,故
9、 C 正确。当v CB ,故 FACFBC,所以AC线先断,A 正确。 4如图所示,质量为m的滑块与轨道间的动摩擦因数为,在滑块从A滑到B的过程中,受到的摩擦力的最 大值为Ff,则() AFfmgBFfmgD无法确定Ff的值 答案C 解析设滑块滑到圆弧轨道最低点时速度为v,由FNmgmv 2 R 可知,FNmg,故一定有Ffmg,C 正确。 5(多选)如图所示,小物块放于半径为R的半球的顶端,若给小物块一水平的初速度v时小物块对半球刚好 无压力,则下列说法正确的是() A小物块立即离开球面做平抛运动 B小物块落地时水平位移为2R C小物块沿球面运动 D小物块落地时速度的方向与地面成 45角 答
10、案AB 解析小物块在最高点时对半球刚好无压力,表明从最高点开始小物块离开球面做平抛运动,A 正确,C 错误; 由mgm v 2 R 知,小物块在最高点的速度大小vgR,又由于R1 2gt 2,v ygt,xvt,故x 2R,B 正确;设小物 块落地时速度的方向与地面的夹角为,tanv y v 2,45,D 错误。 6(多选)质量为m的小球由轻绳a和b分别系于一轻质木架上的A点和C点。如图所示,当轻杆绕轴BC以角 速度匀速转动时,小球在水平面内做匀速圆周运动,绳a在竖直方向,绳b在水平方向。当小球运动到图示位置 时,绳b被烧断的同时木架停止转动,则() A绳a对小球拉力不变 B绳a对小球拉力增大
11、 C小球可能前后摆动 D小球不可能在竖直平面内做完整的圆周运动 答案BC 解析绳b烧断前,小球竖直方向的合力为零,即Famg,烧断b后,小球在竖直面内做圆周运动,且Fa mgmv 2 l ,所以FaFa,A 错误,B 正确;当足够小时,小球不能摆过AB所在高度,C 正确;当足够大时,小 球在竖直面内能通过AB上方的最高点而做完整的圆周运动,D 错误。 7. 在光滑水平面上相距 20 cm 的两点钉上 A、B 两个钉子,一根长 1 m 的细绳一端系小球,另一端拴在 A 钉上, 如图所示。已知小球质量为 0.4 kg,某时刻小球开始从图示位置以 2 m/s 的速度做水平匀速圆周运动,若绳所能承 受
12、的最大拉力为 3.2 N,则从开始运动到绳被拉断历时为() A2.4 sB1.4 sC1.2 sD0.9 s 答案C 解析当绳子拉力为 3.2 N 时,由Fmv 2 r ,可得rmv 2 F 0.5 m。小球每转半个圆周,其半径就减小 0.2 m。由 分析知, 小球分别以半径为 1 m、 0.8 m 和 0.6 m 各转过半个圆周后绳子就被拉断了, 所以时间为tr 1 v r 2 v r 3 v 1.2 s,故 C 正确。 8如图所示,一光滑的半径为R的半圆形轨道固定在水平面上,AB为半圆形轨道的竖直直径,一个质量为m 的小球以某一速度冲上轨道,当小球将要从轨道口飞出时,对轨道的压力恰好为零,
13、则小球落地点C距A处多远? 答案2R 解析小球在B点飞出时,对轨道压力为零, 由mgmv 2 B R ,得vBgR, 小球从B点飞出做平抛运动,t 2h g 4R g , 水平方向的位移大小即落地点C到A的距离 xvBtgR 4R g 2R。 9如图所示,小球 A 质量为m,固定在轻细直杆L的一端,并随杆一起绕杆的另一端O点在竖直平面内做圆周 运动。如果小球经过最高点时,杆对球的拉力大小等于球的重力。重力加速度为g,求: (1)小球在最高点的速度大小; (2)当小球经过最低点时速度为 6gL,求杆对球作用力大小和向心加速度大小。 答案(1) 2gL(2)7mg6g 解析(1)小球在最高点时,受
14、重力mg和杆对它向下的拉力F1,合力提供向心力,由牛顿第二定律得mgF1 mv 2 1 L 依题意F1mg 联立解得v1 2gL。 (2)小球在最低点时,受重力mg和杆对它向上的拉力F2,合力提供向心力,由牛顿第二定律得F2mgmv 2 2 L 解得F2mgmv 2 2 L 将v2 6gL代入解得F27mg 球的向心加速度anv 2 2 L 6g。 10如图所示,在光滑水平面上有质量为m1、m2的两个小球 1、2 用轻弹簧连接在一起,再用长为L1的细线一 端拴住球 1,一端拴在O点上,两球都以相同的角速度绕O点做匀速圆周运动,保证两球与O点三者始终在同一 直线上,若两球之间的距离为L2,试求细
15、线的拉力以及将细线烧断的瞬间两球的加速度。 答案见解析 解析以球 2 为研究对象,球 2 绕O点做匀速圆周运动所需的向心力由弹簧的弹力提供,设弹力为F,则有F m2(L1L2) 2;以球 1 为研究对象,球 1 绕 O点做匀速圆周运动所需的向心力由细线的拉力和弹簧弹力的合力提 供,设细线拉力为FT,则有FTFm1L1 2。由以上两式可解得:F Tm1L1 2m 2(L1L2) 2。当细线烧断瞬间,细 线的拉力FT0,而弹簧的弹力仍为Fm2(L1L2) 2,故球 2 的加速度 a2F m2(L 1L2) 2,方向水平指向 O点。球 1 的加速度a1F m1 m 2 m1(L 1L2) 2,负号表
16、示 a1的方向水平背离O点,与a2的方向相反。 11如图所示,两绳AC、BC系着一个质量为m0.1 kg 的小球,AC绳长l2 m,两绳都拉直时与竖直轴夹角 分别为 30与 45。问球的角速度满足什么条件时,两绳始终张紧?(g取 10 m/s 2) 答案2.40 rad/s3.16 rad/s 解析当BC恰好拉直,但没有拉力存在时,有 FT1cos30mg FT1sin30mlsin30 2 1 解得12.40 rad/s 当AC恰好拉直,但没有拉力存在时,有 FT2cos45mg FT2sin45mlsin30 2 2 解得23.16 rad/s 所以要使两绳始终张紧,必须满足的条件是 24
17、0 rad/s3.16 rad/s。 12. 如图所示,水平转盘可绕竖直中心轴转动,盘上放着质量均为 1 kg 的 A、B 两个物块,物块之间用长为 1 m 的细线相连,细线刚好伸直且通过转轴中心O,A 物块与O点的距离为 0.4 m,物块可视为质点。A、B 与转盘间的 动摩擦因数均为 0.1,且认为最大静摩擦力等于滑动摩擦力,g取 10 m/s 2。 (1)当转盘至少以多大的角速度匀速转动时,细线上出现拉力? (2)当转盘以11 rad/s 的角速度匀速转动时,A、B 受到的摩擦力分别是多大? (3)当转盘至少以多大的角速度匀速转动时,A、B 两个物块均会在转盘上滑动? 答案(1) 5 3 rad/s(2)0.4 N0.6 N (3) 10 rad/s 解析(1)对 B 物块,当 B 所受摩擦力恰好达到最大静摩擦力时,细线上刚好出现拉力,有:mgm 2 0r2 0 g r2 5 3 rad/s。 (2)10,可以知道 A、B 所受摩擦力均未达到最大静摩擦力,则:fAm 2 1r10.4 N,fBm 2 1r20.6 N。 (3)设当 A、B 所受摩擦力均达到最大静摩擦力时,细线拉力为T, 对 A 物块:Tmgm 2 2r1 对 B 物块:Tmgm 2 2r2 联立计算得出: 2 2g r2r1 20.110 0.60.4 10 rad/s。