1、教教 案案教学基本信息课题基本立体图形(旋转体)学科数学学段: 高一年级高一教材书名:人教 A 版数学必修第二册出版社: 人民教育出版社出版日期:2019 年 6 月教学设计参与人员姓名单位设计者彭英武北京市顺义区第一中学实施者彭英武北京市顺义区第一中学指导者李淑敬、赵贺北京市顺义区教育研究和教师研修中心课件制作者彭英武北京市顺义区第一中学其他参与者李淑敬、赵贺北京市顺义区教育研究和教师研修中心教学目标及教学重点、难点理解圆柱、圆锥、圆台、球的定义,知道这四种几何体的结构特征,能够识别和区分这些几何体;会用柱、锥、台、球的结构特征描述简单组合体的结构特征. 使学生感受空间几何体存在于现实生活周
2、围,提高学生的观察能力。同时培养学生的空间想象能力和抽象括能力.教学过程(表格描述)教学环节主要教学活动设置意图讲讲授授新新知知今天我们要学习的是旋转体,那什么是旋转体呢?旋转体旋转体一条平面曲线(包括直线)绕它所在平面内的一条定直线旋转所形成的曲面叫做旋转面,封闭的旋转面围成的几何体叫做旋转体,这条定直线叫做旋转体的轴.一圆柱以矩形一边所在直线为旋转轴,其余三边旋转一周形成的面围城的旋转体叫做圆柱.介绍与圆柱有关的定义讲讲授授新新知知旋转轴叫做圆柱的轴,垂直于轴的边旋转而成的圆面叫做圆柱的底面,平行于轴的边旋转而成的曲面叫做圆柱的侧面,无论旋转到什么位置,平行于轴的边叫做圆柱的母线,圆柱用表
3、示它的轴的字母表示,如图中的圆柱记作圆柱 OO能说说生活中你见过的哪些物体和容器是圆柱形吗?2圆锥以直角三角形的一条直角边所在直线为旋转轴,其余两边旋转一周形成的面所围成的旋转体叫做圆锥请你仿照圆柱中轴、底面、侧面、母线的定义,给出圆锥的轴、底面、侧面、母线的定义,并在图中标出它们.圆锥也是用表示它的轴的字母表示,如图中的圆锥记作圆锥SO通过圆柱的定义和对图象的观察,你 们 有 哪 些 发现?注意观察圆柱形在生活中的应用“ 侧 面 的 母 线 ”(也可以简称母线) ,而且无需区分母线的初始位置,所以才有“无论旋转到什么位置”的说法.讲讲授授新新知知3.圆台用平行于圆锥底面的平面去截圆锥,底面与
4、截面之间的部分叫做圆台请同学们观察图象,你能标出圆台的侧面,轴,母和底面吗,这是圆台的侧面,圆台的轴,圆台的母线和圆台的底面.它的表示也是用它的轴的字母表示,如图圆台记作圆台 OO探究 1圆柱可以由矩形旋转得到, 圆锥可以由直角三角形旋转得到,圆台是否也可以由平面图形旋转得到?如果可以,由什么平面图形旋转得到?如何旋转?探究 2圆柱,圆锥,圆台结构上有哪些相同点和不同点?当底面发生变化时,它们能否互相转化?4.球半圆以它的直径所在直线为旋转轴,旋转一周形成的曲面叫做球面,球面所围成的旋转体叫做球体,简称球简单几何体认真观察,分析圆台的特点,培养学生的观察能力从旋转的角度再次认识了圆台.进而体会
5、圆柱,圆锥,圆台的关系.加深同学们对圆柱,圆锥,圆台的认识注意球面与球的区别,球面是一种曲面,而球是球面围成的几何体.讲讲授授新新知知棱柱,棱锥,棱台,圆柱,圆锥,圆台和球是常见的简单几何体,其中棱柱与圆柱统称为柱体棱锥与圆锥统称为锥体,棱台与圆台统称为台体例题 观察图中的物体,说出它们的主要结构特征例题 如图,判断下列几何体是不是台体,并说明原因例题 判断下列命题是否正确A 组(1)用一个平面去截圆锥,得到一个圆锥和圆台;错误(2)经过圆柱任意两条母线的截面是一个矩形面;正确(3)以直角三角形的一边为轴旋转一周所得的旋转体是圆锥;错误通过这道题希望同学们能加深对台体的认识。只有在平面平行于圆
6、锥底面时,才能将圆锥截为一个圆锥和一个圆台加深圆柱母线的认识讲讲授授新新知知(4)圆锥、圆台中过轴的截面是轴截面,圆锥的轴截面是等腰三角形,圆台的轴截面是等腰梯形正确B 组(5)到定点的距离等于定长的点的集合是球;错误(6)以等腰三角形的底边上的高所在的直线为旋转轴,其余各边旋转一周形成的曲面围成的几何体是圆锥;正确(7)在圆柱的上下底面上各取一点,这两点的连线是圆柱的母线;错误(8)球面上四个不同的点一定不在同一平面内错误解题小结我们对于旋转体有进一步的认识希望同学们在解决概念相关的问题时,一定牢牢的记住书本中给的概念,抓住关键字、词,这样才会更好的促进我们对概念的理解从轴截面的角度进一步认
7、识圆柱,圆锥,圆台此题同学们要注意球面与球的区别.培养学生逆向思维鼓励学生小结讲讲授授新新知知5.简单组合体现实世界中的物体表示的几何体,除了柱体,锥体,台体和球等简单几何体外,还有大量的几何体是由简单几何体组合而成的,这些几何体称作简单组合体请你说一说下图中各几何体是由哪些简单几何体组合而成的例题解析例题 如图,以直角梯形 ABCD 的下底 AB 所在直线为轴,其余三边旋转一周形成的面围成一个几何体说出这个几何体的结构特征思考: 若分别以 CD,BC,AD 所在直线为轴,其余三边旋转一周形成的面围成一个几何体你能说出这些几何体的结构特征吗?例题 如图,以直角梯形 ABCD 的上底 CD 所在
8、直线为轴,其余三边旋转一周形成的面围成的几何体说出这个几何体的结构特征现实世界中的物体大多是由具有柱体, 椎体, 台体,球等结构特征的物体组合而成.培养分类讨论的思想讲讲授授新新知知例题 如图,以直角梯形 ABCD 的边 BC 所在直线为轴,其余三边旋转一周形成的面围成的几何体说出这个几何体的结构特征例题 如图,以直角梯形 ABCD 的边 AD 所在直线为轴,其余三边旋转一周形成的面围成的几何体说出这个几何体的结构特征例题 如图,以平行四边形 ABCD 的一边 AB 所在直线为轴,其他三边旋转一周形成的面围成一个几何体,画出这个几何体的图形,并说出其中的简单几何体及有关的结构特征这道题是对旋转体拼接形成的组合体结构特征的刻画,目的是加深对几何体的认识.也培养同学们的空间想象能力.加强对旋转体拼接形成的组合体结构特征的刻画总总结结五、课堂小结回顾本节课知识,并建立知识的结构.作作业业如图以三角形 ABC 的一边 AB 所在的直线为轴,其余两边旋转一周形成的面围成一个几何体,说出这个几何体的结构特征课后作业,加深对知识的理解