1、第五节二、二、 曲线的渐近线曲线的渐近线三、三、 函数图形的描绘函数图形的描绘机动 目录 上页 下页 返回 结束 曲线的凸性与函数图形 第三三章 一、曲线的凸性与拐点一、曲线的凸性与拐点定义定义 . 设函数)(xf在区间 I 上连续 ,21Ixx(1) 若恒有,2)()()2(2121xfxfxxf则称的)(xf图形是下凸下凸的;(2) 若恒有,2)()()2(2121xfxfxxf则称的)(xf连续曲线上有切线的左右两侧凸性相反的分界点称为拐点拐点 .图形是上上凸凸的 .yox2x1x221xx yox1x221xx 2xyox一、曲线的凸性与拐点一、曲线的凸性与拐点机动 目录 上页 下页
2、返回 结束 定理定理2.(凸性判定法)(xf(1) 在 I 内,0)( xf则 在 I 内图形是下凸的 ;)(xf(2) 在 I 内,0)( xf则 在 I 内图形是上凸的 .)(xf证证:,21Ixx利用一阶泰勒公式可得)()(1fxf221xx !2)(1f 21)(x221xx )()(2fxf221xx )(f 221xx )(2x221xx !2)(2f 22)(x221xx 两式相加两式相加)(2)()(21fxfxf221xx 22!21)(12xx )()(21ff ,0)(时当 xf),(2)()(21fxfxf221xx 说明 (1) 成立;(2)(f 221xx )(1x
3、221xx 机动 目录 上页 下页 返回 结束 设函数在区间I 上有二阶导数证毕例例1. 判断曲线4xy 的凸性.解解:,43xy 212xy 时,当0 x;0 y,0时x, 0 y故曲线4xy 在),(上是向下凸的.说明说明:1) 若在某点二阶导数为 0 ,2) 根据拐点的定义及上述定理, 可得拐点的判别法如下:若曲线)(xfy ,0连续在点x0)(0 xf或不存在,但)(xf 在 两侧异号异号,0 x则点)(,(00 xfx是曲线)(xfy 的一个拐点.则曲线的凸性不变 .在其两侧二阶导数不变号,xyo机动 目录 上页 下页 返回 结束 例例2. 求曲线3xy 的拐点. 解解:,3231x
4、y3592 xyxy y0)0,(),0(不存在0因此点 ( 0 , 0 ) 为曲线3xy 的拐点 .oxy下凸上凸机动 目录 上页 下页 返回 结束 xxy24362 )(3632xx例例3. 求曲线14334xxy的凸性区间及拐点.解解:1) 求y ,121223xxy2) 求拐点可疑点坐标令0 y得,03221xx对应3) 列表判别271121,1yy)0,(),0(32),(32y xy0320012711故该曲线在)0,(),(32及向下凸,向上凸 , 点 ( 0 , 1 ) 及),(271132均为拐点.上在),0(32下凸下凸上凸机动 目录 上页 下页 返回 结束 32) 1 ,
5、 0(),(2711322xy 无渐近线 .点 M 与某一直线 L 的距离趋于 0,二、 曲线的渐近线曲线的渐近线定义定义 . 若曲线 C上的点M 沿着曲线无限地远离原点时,则称直线 L 为曲线C 的渐近线渐近线 .例如, 双曲线12222byax有渐近线0byax但抛物线或为“纵坐标差纵坐标差”NLbxkyMxyoC)(xfy Pxyo机动 目录 上页 下页 返回 结束 1. 水平与铅直渐近线水平与铅直渐近线若,)(limbxfx则曲线)(xfy 有水平渐近线.by )(x或若,)(lim0 xfxx则曲线)(xfy 有垂直渐近线.0 xx )(0 xx或例例4. 求曲线211xy的渐近线
6、.解解:2)211(limxx2 y为水平渐近线;,)211(lim1xx1 x为垂直渐近线.21机动 目录 上页 下页 返回 结束 2. 斜渐近线斜渐近线有则曲线)(xfy 斜渐近线.bxky)(x或若,0)(limxfx)(bxk 0)(limxbkxxfxx0)(limxfx)(bxk 0)(limxbkxxfx)(limxbxxfkxxxfkx)(lim)(limxkxfbx机动 目录 上页 下页 返回 结束 )(x或)(x或例例5. 求曲线3223xxxy的渐近线.解解:,) 1)(3(3xxxy,lim3yx) 1(x或所以有铅直渐近线3x及1x又因xxfkx)(lim32lim2
7、2xxxx1)(limxxfbx3232lim22xxxxx22xy为曲线的斜渐近线 .312 xyyxO三、函数图形的描绘三、函数图形的描绘步骤步骤 :1. 确定函数)(xfy 的定义域 ,期性 ;2. 求, )(, )(xfxf 并求出)(xf 及)(xf 3. 列表判别增减及凸性区间 , 求出极值和拐点 ;4. 求渐近线 ;5. 确定某些特殊点 , 描绘函数图形 .为 0 和不存在的点 ;并考察其对称性及周机动 目录 上页 下页 返回 结束 例例6. 描绘22331xxy的图形.解解: 1) 定义域为, ),(无对称性及周期性.2),22xxy,22 xy,0 y令2,0 x得,0 y令
8、1x得3)xyy y012)0,() 1 ,0()2, 1 (),2(00234(极大)(拐点)32(极小)4)xy1332201123yOx例例7. 描绘方程044)3(2yxyx的图形.解解: 1),) 1(4)3(2xxy定义域为), 1 ( , ) 1 ,(2) 求关键点.)3(2xy4044yxy) 1(223xyxy2) 1(4) 1)(3(xxxy 42048 yxy) 1(241 xyy3) 1(2x得令0 y;3, 1x原方程两边对 x 求导得两边对 x 求导得113) 1,() 1 , 1()3, 1 (), 3(xyy y20,) 1(4)3(2xxy,) 1(4) 1)
9、(3(2xxxy3) 1(2 xy3) 判别曲线形态00(极大极大)(极小极小)4) 求渐近线,lim1yx为铅直渐近线无定义无定义机动 目录 上页 下页 返回 结束 1x又因xyxlim,4141k即)41(limxybx41) 1(4)3(lim2xxxx) 1(495limxxx45) 1(4)3(2xxy5) 求特殊点xy049241为斜渐近线4541xy机动 目录 上页 下页 返回 结束 2) 1(4) 1)(3(xxxy3) 1(2 xy6)绘图(极大极大)(极小极小)斜渐近线1x铅直渐近线4541xy特殊点2无定义无定义xy113) 1,() 1 , 1()3, 1 (), 3(
10、0 xy04924112Oyx3215) 1( 4) 3(2xxy1x4541xy例例8. 描绘函数21y22xe的图形. 解解: 1) 定义域为, ),(图形对称于 y 轴.2) 求关键点 y21,22xex y2122xe)1 (2x得令0 y;0 x得令0 y1x机动 目录 上页 下页 返回 结束 2100e21xyy y10) 1,0(), 1 (3) 判别曲线形态(极大极大)(拐点拐点)(极大极大)(拐点拐点)0limyx0y为水平渐近线5) 作图4) 求渐近线机动 目录 上页 下页 返回 结束 2100e21xyy y10) 1,0(), 1 (2221xeyxyoBA21内容小结
11、内容小结1.曲线凸性与拐点的判别Ixxf ,0)( )yf xI曲线在 上向下凸Ixxf ,0)(上向上凸在曲线Ixfy)(拐点 连续曲线上有切线的上凸下凸分界点机动 目录 上页 下页 返回 结束 水平渐近线 ; 垂直渐近线; 2. 曲线渐近线的求法斜渐近线按作图步骤进行3. 函数图形的描绘机动 目录 上页 下页 返回 结束 思考与练习思考与练习 1. 曲线)(1122xxeey(A) 没有渐近线;(B) 仅有水平渐近线;(C) 仅有铅直渐近线;(D) 既有水平渐近线又有铅直渐近线.提示提示:;111lim22xxxee2211lim0 xxxeeD机动 目录 上页 下页 返回 结束 拐点为
12、,上凸区间是 ,),(21)1,(2121e2. 曲线21xey的下凸区间是 ,提示提示:)21 (222xeyx ),(2121),(21及渐近线 .1y机动 目录 上页 下页 返回 结束 yox1)1 ,(2121e)1 ,(2121e112xxy有位于一直线的三个拐点.1.求证曲线 证明:证明: y y222) 1(21xxx3223) 1() 133(2xxxx32) 1()32)(32)(1(2xxxx备用题备用题xxx2) 1() 1(222) 1(x42) 1(x)22(x22) 1(x)21 (2xx ) 1(22xx2机动 目录 上页 下页 返回 结束 令0 y得,11x, )1,1(从而三个拐点为因为32所以三个拐点共线.323x,322x, )34831,32()34831,32(3211348311134831112xxy32) 1()32)(32)(1(2 xxxxy41=证明:20 x当时,.2sinxx有证明证明:xxxF2sin)(令, 0)0(F, 则)(xF )(xF)(xF是上凸函数)(xF即xx2sin)20( x 2 .0)2(F2cosxxsin0)2(),0(minFF0机动 目录 上页 下页 返回 结束 y)(xF2Ox