1分类加法计数原理与分步乘法计数原理1 课件高中数学人教A版(2019)选择性必修第三册.pptx

上传人(卖家):四川天地人教育 文档编号:2584418 上传时间:2022-05-07 格式:PPTX 页数:22 大小:861.28KB
下载 相关 举报
1分类加法计数原理与分步乘法计数原理1 课件高中数学人教A版(2019)选择性必修第三册.pptx_第1页
第1页 / 共22页
1分类加法计数原理与分步乘法计数原理1 课件高中数学人教A版(2019)选择性必修第三册.pptx_第2页
第2页 / 共22页
1分类加法计数原理与分步乘法计数原理1 课件高中数学人教A版(2019)选择性必修第三册.pptx_第3页
第3页 / 共22页
1分类加法计数原理与分步乘法计数原理1 课件高中数学人教A版(2019)选择性必修第三册.pptx_第4页
第4页 / 共22页
1分类加法计数原理与分步乘法计数原理1 课件高中数学人教A版(2019)选择性必修第三册.pptx_第5页
第5页 / 共22页
点击查看更多>>
资源描述

1、6.1分类加法计数原理与分步乘法计数原理(一)讲课人:邢启强2新课引入新课引入 思考:用一个大写有英文字母或一个阿拉伯数字给教室里的座位编号,总共能编出多少种不同的号码?上述问题中,最重要的特征是“或”字的出现:每个座位可以用一个英文字母或一个阿拉伯数字编号.由于英文字母、阿拉伯数字各不相同,因此用英文字母编出的号码与用阿拉伯数字编出的号码也是各不相同的.因为英文字母共有26个,阿拉伯数字09共有10个,所以总共可以编出26+10=36种不同的号码.探究:你能说说这个问题的特征吗?你能举一些生活中类似的例子吗?计数问题是我们从小就经常遇到的,通过列举一个一个地数是计数的基本方法.但当问题中的数

2、量很大时,列举的方法效率不高.能否设计巧妙的“数法”,以提高效率呢?讲课人:邢启强3上述计数过程的基本环节是:(1)确定分类标准,根据问题条件分为字母号码和数字号码两类; (2)分别计算各类号码的个数;(3)各类号码的个数相加,得出所有号码的个数.学习新知学习新知一般地,有如下分类加法计数原理: 完成一件事有两类不同方案,在第1类方案中有m种不同的方法,在第2类方案中有n种不同的方法,那么完成这件事共有Nm+n种不同的方法.注意:两类不同方案中方法互不相同讲课人:邢启强4工程学工程学物理学物理学医学医学化学化学生物学生物学大学大学A法学法学信息技术学信息技术学会计学会计学数学数学大学大学B例题

3、讲评例题讲评例1.在填写高考志愿表时,一名高中毕业生了解到,两所大学各有自己感兴趣的强项专业,具体情况如右:那么,这名同学可能的专业选择共有多少种?分析:要完成的事情是“选一个专业”,因为这名同学在A,B两所大学中只能选择一所,而且只能选择一个专业,又因为这两所大学没有共同的强项专业,所以符合分类加法计数原理的条件.解:这名同学可以选择A,B两所大学中的一所,在A大学中有5种专业选择方法,在B大学中有4种专业选择方法,因为没有一个强项专业是两所大学共有的,所以根据分类加法计数原理,这名同学可能的专业选择种数为N=5+4=9.讲课人:邢启强5探究:如果完成一件事有三类不同方案,在第1类方案中有m

4、1种不同的方法,在第2类方案中有m2种不同的方法,在第3类方案中有m3种不同的方法,那么完成这件事共有多少种不同的方法?问题问题2. 从甲地到乙地,可以乘火车,也可以乘汽车,还可以乘轮船。一天中,火车从甲地到乙地,可以乘火车,也可以乘汽车,还可以乘轮船。一天中,火车有有4 班班, 汽车有汽车有2班,轮船有班,轮船有3班。那么一天中乘坐这些交通工具从甲地到乙地共有多班。那么一天中乘坐这些交通工具从甲地到乙地共有多少种不同的走法少种不同的走法?解析解析: 从甲地到乙地有从甲地到乙地有3类方法类方法, 第一类方法第一类方法, 乘火车乘火车, 有有4种方法种方法;第二类方法第二类方法, 乘汽车乘汽车,

5、 有有2种方种方法法;第三类方法第三类方法, 乘轮船乘轮船, 有有3种方法种方法; 所以所以 从甲地到乙地共有从甲地到乙地共有4+2+3= 9种方法。种方法。 讲课人:邢启强6完成一件事情,有n类不同方案,在第1类方案中有m1种不同的方法,在第2类方案中有m2种不同的方法在第n类方案中有mn种不同的方法.那么完成这件事共有N=m1+m2+ +m 种不同的方法.分类加法计数原理分类加法计数原理 2)首先要根据具体的问题确定一个分类标准,在分类标准下进行分)首先要根据具体的问题确定一个分类标准,在分类标准下进行分类,然后对每类方法计数类,然后对每类方法计数.1)各类方案之间相互独立)各类方案之间相

6、互独立,都能独立的完成这件事,要计算方法种都能独立的完成这件事,要计算方法种数数,只需将各类方案方法数相加只需将各类方案方法数相加,因此分类计数原理又称因此分类计数原理又称加法原理加法原理学习新知学习新知其特点是各类中的每一个方法都可以完成要做的事情,它强调的是每一类中的一个方法就可以完成要做的事情其特点是各类中的每一个方法都可以完成要做的事情,它强调的是每一类中的一个方法就可以完成要做的事情讲课人:邢启强7练习:练习:在所有的两位数中,个位数字大于十位数字的两位数共有多少个?在所有的两位数中,个位数字大于十位数字的两位数共有多少个?【解解】:按十位上的数字分别是:按十位上的数字分别是1,2,

7、3,4,5,6,7,8的情况分成的情况分成8类,类,在每一类中满足题目条件的两位数分别是在每一类中满足题目条件的两位数分别是8个,个,7个,个,6个,个,5个,个,4个,个,3个,个,2个,个,1个由分类加法计数原理知,符合题个由分类加法计数原理知,符合题意的两位数共有意的两位数共有8765432136(个个)例题讲评例题讲评变式变式:在所有的两位数中,个位数字在所有的两位数中,个位数字小于小于十位数字的两位数共有多少个?十位数字的两位数共有多少个?讲课人:邢启强8学习新知学习新知思考:用前6个大写英文字母和19九个阿拉伯数字,以A1, A2, ,B1,B2, 的方式给教室里的座位编号,总共能

8、编出多少个不同的号码?987654321AAAAAAAAA987654321号码号码得到的得到的字字数数母母字字A分析:这里要完成的事情仍然是“给一个座位编号”,但与前一问题的要求不同,在前一问题中,用26个英文字母中的任意一个或10个阿拉伯数字中的任意一个,都可以给出一个座位号码.而在这个问题中,号码必须由一个英文字母和一个作为下标的阿拉伯数字组成,得到一个号码必须经过先确定一个英文字母,后确定一个阿拉伯数字这两个步骤.用右图的方法可以列出所有可能的号码.右图是解决计数间题常用的树形图.请你用树形图列出所有可能号码.我们还可以这样来思考:由于前6个英文字母的任意一个都能与9个数字中的任何一个

9、组成一个号码,而且它们各不相同,因此共有69=54个不同的号码.讲课人:邢启强9学习新知学习新知上述问题中,最重要的特征是“和”字的出现: 一个座位编号由一个英文字母和一个阿拉伯数字构成,因此得到一个号码必须经过先确定一个英文字母,后确定一个阿拉伯数字这两个步骤.每个英文字母与不同的数字组成的号码是互不相同的.一般地,有如下分步乘法计数原理:完成一件事需要两个步骤,做第1步有m种不同的方法,做第2步有n种不同的方法,那么完成这件事共有N=mn种不同的方法.注意:无论第1步采用哪种方法,与之对应的第2步都有相同的方法数。讲课人:邢启强10例题讲评例题讲评例2.某班有男生30名、女生24名,从中任

10、选男生和女生各1名代表班级参加比赛,共有多少种不同的选法?分析:要完成的一件事是“选男生和女生各1名”, 可以分两个步骤:第1步,选男住;第2步,选女生.解:第1步,从30名男生中选出1人,有30种不同选法;根据分步乘法计数原理,共有不同选法的种数为N=3024=720第2步,从24名女生中选出1人,有24种不同选法,讲课人:邢启强11学习新知学习新知探究 如果完成一件事需要三个步骤,做第1步有m1种不同的方法,做第2步有m2种不同的方法,做第3步有m3种不同的方法,那么完成这件事共有多少种不同的方法?如果完成一件事情需要n个步骤,做每一步都有若干种不同的方法,那么应当如何计数呢?分步乘法计数

11、原理分步乘法计数原理完成一件事情,需要分成完成一件事情,需要分成n个步骤个步骤:做第做第1步有步有m1种不同的方法,做第种不同的方法,做第2步有步有m2种不同的方法种不同的方法做第做第n步有步有mn种不同的方法种不同的方法.那么完成这件事共有那么完成这件事共有N=m1 m2 mn种不同的方法种不同的方法.1,2.无论第 步采用哪种方法 都不影响第 步方法的选取2)首先要根据具体问题的特点确定一个分步的标准,然后对每步方法计数)首先要根据具体问题的特点确定一个分步的标准,然后对每步方法计数.1)各个步骤相互依存)各个步骤相互依存,只有各个步骤都完成了只有各个步骤都完成了,这件事才算完成这件事才算

12、完成,将各个步骤将各个步骤的方法数相乘得到完成这件事的方法总数的方法数相乘得到完成这件事的方法总数,又称又称乘法原理乘法原理讲课人:邢启强12学习新知学习新知分类加法计数原理和分步乘法计数原理,回答的都是有关做一件事的不同方法的种数问题.区别在于:分类加法计数原理: 针对的是分类问题,其中各种方法相互独立,用其中任何一种方法都可以做完这件事;分步乘法计数原理: 针对的是分步问题,各个步骤中的方法互相依存,只有各个步骤都完成才算做完这件事.讲课人:邢启强13例题讲评例题讲评例3书架的第1层放有4本不同的计算机书,第2层放有3本不同的文艺书,第3层放有2本不同的体育书.(1)从书架上任取1本书,有

13、多少种不同取法?(2)从书架的第1层、第2层、第3层各取1本书,有多少种不同取法?分析:(1)要完成的一件事是“从书架上取1本书”,可以分从第1层、第2层和第3层中取三类方案;(2)要完成的一件事是“从书架的第1层、第2层、第3层各取1本书”,可以分三个步骤完成解:(1)从书架上任取1本书,有三类方案:第1类方案是从第1层取1本计算机书,有4种方法;第2类方案是从第2层取1本文艺书,有3种方法;第3类方案是从第3层取1本体育书,有2种方法,根据分类加法计数原理,不同取法的种数为N=4+3+2=9(2)从书架的第1层、第2层、第3层各取1本书,可以分三个步骤完成:第1步,从第1层取1本计算机书,

14、有4种方法;第2步,从第2层取1本文艺书,有3种方法;第3步,从第3层取1本体育书,有2种方法.根据分步乘法计数原理,不同取法的种数为N=432=24.讲课人:邢启强14例题讲评例题讲评例4要从甲、乙、丙3幅不同的画中选出2幅,分别挂在左、右两边墙上的指定位置,共有多少种不同的挂法?分析:要完成的一件事是“从3幅画中选出2幅,并分别挂在左、右两边墙上”,可以分步完成。解:从3幅画中选出2幅分别挂在左、右两边墙上,可以分两个步骤完成: 第1步,从3幅画中选1幅挂在左边墙上,有3种选法; 第2步,从剩下的2幅画中选1幅挂在右边墙上,有2种选法, 根据分步乘法计数原理,不同挂法的种数为N=32=6.

15、:6种挂法可以表示如下种挂法可以表示如下左边左边右边右边得到的挂法得到的挂法左甲右乙左甲右乙甲甲乙乙丙丙 左甲右丙左甲右丙甲甲乙乙丙丙左乙右甲左乙右甲左乙右丙左乙右丙甲甲乙乙丙丙左丙右甲左丙右甲左丙右乙左丙右乙讲课人:邢启强15例题讲评例题讲评例5给程序模块命名,需要用3个字符,其中首字符要求用字母AG或UZ,后两个字符要求用数字19,最多可以给多少个程序模块命名?分析:要完成的一件事是“给一个程序模块命名”,可以分三个步骤完成:第1步,选首字符;第2步,选中间字符;第3步,选最后一个字符,而首字符又可以分为两类,解:由分类加法计数原理,首字符不同选法的种数为7+6=13.后两个字符从19中选

16、,因为数字可以重复,所以不同选法的种数都为9.由分步乘法计数原理,不同名称的个数是1399=1053,即最多可以给1053个程序模块命名.你还能给出不同的解法吗?讲课人:邢启强16例6.电子元件很容易实现电路的通与断、电位的高与低等两种状态,而这也是最容易控制的两种状态,因此计算机内部就采用了每一位只有0或1两种数字的记数法,即二进制,为了使计算机能够识别字符,需要对字符进行编码,每个字符可以用1个或多个字节来表示,其中字节是计算机中数据存储的最小计量单位,每个字节由8个二进制位构成。(1)1个字节(8位)最多可以表示多少个不同的字符?(2)计算机汉字国标码包含了6763个汉字,一个汉字为一个

17、字符,要对这些汉字进行编码,每个汉字至少要用多少个字节表示?例题讲评例题讲评分析:(1)要完成的一件事是“确定1个字节各二进制位上的数字”,由于每个字节有8个二进制位,每一位上的值都有0,1两种选择,而且不同的顺序代表不同的字符因此可以用分步乘法计数原理求解;(2)只要计算出多少个字节所能表示的不同字符不少于6763个即可解:(1)用右图表示1个字节. 1个字节共有8位,每位上有2种选择,根据分步乘法计数原理,1个字节最多可以表示不同字符的个数是22222222=28=256.(2)由(1)知,1个字节所能表示的不同字符不够6763个,我们考虑2个字节能够表示多少个字符.前1个字节有256种不

18、同的表示方法,后1个字节也有256种表示方法.根据分步乘法计数原理,2个字节可以表示不同字符的个数是256256=65536这已经大于汉字国标码包含的汉字个数6763.因此要对这些汉字进行编码,每个汉字至少要用2个字节表示.讲课人:邢启强177名学生中有名学生中有3名会下象棋但不会下围棋,有名会下象棋但不会下围棋,有2名学生会下围棋名学生会下围棋但不会下象棋,另但不会下象棋,另2名既会下象棋又会下围棋,现从中各选名既会下象棋又会下围棋,现从中各选1人人同时参加象棋比赛和围棋比赛,共有多少种不同的选法?同时参加象棋比赛和围棋比赛,共有多少种不同的选法?变式训练变式训练解:解:第一类:第一类:从从

19、3名只会下象棋的学生中选名只会下象棋的学生中选1名参加象棋比赛,同时从名参加象棋比赛,同时从2名只会下名只会下围棋的学生中选围棋的学生中选1名参加围棋比赛,由分步乘法计数原理名参加围棋比赛,由分步乘法计数原理N1326(种种)第二类:第二类:从从3名只会下象棋的学生中选名只会下象棋的学生中选1名参加象棋比赛,同时从名参加象棋比赛,同时从2名既会下象棋又名既会下象棋又会下围棋的学生中选会下围棋的学生中选1名参加围棋比赛,由分步乘法计数原理名参加围棋比赛,由分步乘法计数原理N2326(种种)第三类:第三类:从从2名只会下围棋的学生中选名只会下围棋的学生中选1名参加围棋比赛,同时从名参加围棋比赛,同

20、时从2名既会下象棋又名既会下象棋又会下围棋的学生中选会下围棋的学生中选1名参加象棋比赛,由分步乘法计数原理名参加象棋比赛,由分步乘法计数原理N3224(种种)第四类:第四类:从从2名既会下象棋又会下围棋的学生中各选名既会下象棋又会下围棋的学生中各选1名参加围棋比赛和象棋比赛,名参加围棋比赛和象棋比赛,有有N42(种种)综上,由分类加法计数原理可知,不同选法共有综上,由分类加法计数原理可知,不同选法共有NN1N2N3N4664218(种种)讲课人:邢启强18例7. 五名学生报名参加四项体育比赛,每人限报一项,报名方法的种数为多少?又他们争夺这四项比赛的冠军,获得冠军的可能性有多少种? 解:(1)

21、5名学生中任一名均可报其中的任一项,因此每个学生都有4种报名方法,5名学生都报了项目才能算完成这一事件故报名方法种数为44444= 种 .54(2)每个项目只有一个冠军,每一名学生都可能获得其中的一项获军,因此每个项目获冠军的可能性有5种故有n=5555= 种 .45例题讲评讲课人:邢启强191、某教学楼有四个不同的楼梯,3名学生要下楼,共有多少种不同的下楼方法?2、有4名同学要争夺3个比赛的冠军,冠军获得者共有多少可能?3、四封信投入三个信箱,有多少种投法?4、某公共汽车上有10名乘客,沿途有5个车站,乘客下车的可能方式有多少种?巩固提高巩固提高4 43 34 43 33 34 45 510

22、10讲课人:邢启强205 5、7560075600有多少个正约数有多少个正约数? ? 有多少个奇约数有多少个奇约数? ?解解: :由于由于 75600=275600=24 43 33 35 52 27 7(1)(1)7560075600的每个约数都可以写成的每个约数都可以写成的形式的形式, ,其中其中, , , , lkjl753240 i30 j20 k10 l于是于是, ,要确定要确定7560075600的一个约数的一个约数, ,可分四步完成可分四步完成, ,即即i,j,k,li,j,k,l分别在各自的范围内任取一个值分别在各自的范围内任取一个值, ,这样这样i i有有5 5种取法种取法,

23、j,j有有4 4种取法种取法,k,k有有3 3种取法种取法,l,l有有2 2种取法种取法, ,根据根据分步计数原理得约数的个数为分步计数原理得约数的个数为5 54 43 32=1202=120个个. .讲课人:邢启强211 1如果完成一件事有两类方案如果完成一件事有两类方案, ,这两类方案彼此之间是相互独立的这两类方案彼此之间是相互独立的, ,无论哪一类方案中的哪一种方法都能单独完成这件事无论哪一类方案中的哪一种方法都能单独完成这件事, ,求能完成这求能完成这件事的方法种数就用分类加法计数原理件事的方法种数就用分类加法计数原理2如果完成一件事需要分成多个步骤如果完成一件事需要分成多个步骤,各个

24、步骤都是不可缺少的各个步骤都是不可缺少的,需要需要依次完成所有步骤依次完成所有步骤,才能完成这件事,而完成每一个步骤有若干种不同才能完成这件事,而完成每一个步骤有若干种不同的方法的方法,求能完成这件事的方法种数就用分步乘法计数原理求能完成这件事的方法种数就用分步乘法计数原理方法总结方法总结用两个计数原理解决具体问题时,首先要分清是用两个计数原理解决具体问题时,首先要分清是“分类分类”还是还是“分步分步”,其次,其次要清楚要清楚“分类分类”或或“分步分步”的具体标准,在的具体标准,在“分类分类”时要做到时要做到“不重不漏不重不漏”,在,在“分步分步”时要正确设计时要正确设计“分步分步”的程序,注意步与步之间的连续性的程序,注意步与步之间的连续性讲课人:邢启强22用两个计数原理解决计数问题时,最重要的是在开始计算之前要进行仔细分析需要分类还是需要分步.分类后再分别对每一类进行计数,最后用分类加法计数原理求和,得到总数.完成了所有步骤,恰好完成任务,当然步与步之间要相互独立.分步后再计算每一步的方法数,最后根据分步乘法计数原理,把完成每一步方法数相乘,得到总数.思考乘法运算是特定条件下加法运算的简化,分步乘法计数原理和分类加法计数原理也有这种类似的关系吗?方法总结方法总结 两大原理妙无穷, 茫茫数理此中求; 万万千千说不尽, 运用解题任驰骋。

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 高中 > 数学 > 人教A版(2019) > 选择性必修 第三册
版权提示 | 免责声明

1,本文(1分类加法计数原理与分步乘法计数原理1 课件高中数学人教A版(2019)选择性必修第三册.pptx)为本站会员(四川天地人教育)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!


侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|