1、当盟军获悉此情报后,盟军统帅麦克阿当盟军获悉此情报后,盟军统帅麦克阿2121),(21),(11),(12),(2212min32max 31222121),(jiji(1,1)(1,2) (2,1)(2,2)0430400330020320A07max971907min k,),(*121SxxxxTmkikixi, 0, 1ijjjijTnijiyayyayiEyE),)()(0 ,0 , 1 , 0(),(),(1iiijTijmjxaaxxjxExE) 0, 1 , 0)()(,(),(),(1 iiiiijijjijiijjxyExyayxayxE),()(),( jjjjjiiji
2、ijiijjyxEyxayxayxE),()(),(*)*,(*)*,(*),(*),(yxExyxExyEyxEiiiii*)*,(*)*,()*,()*,(yxEyyxEyxEyxEjjjjj)*,(*)*,(*),(yxEyxEyxEjjijiyayiEyE),(),(iiijjxajxExE),(),(定理定理14-4:设设 ,则,则 为为 的解的充要的解的充要条件:存在数条件:存在数 使得使得 分别是不等式组(分别是不等式组( )和)和()的解。)的解。*,*21SySx*)*,(yxGv*,yxmixxnjvxaiiiiiij, 2 , 1, 01, 2 , 1,)(njyymiv
3、yajjjjjij, 2 , 1, 01, 2 , 1,)(ijiijjjijixExaVyayE),(),(证明:由定理证明:由定理3,( )和()和()成立。)成立。jjjjijimiyvyayiEyE, 2 , 1, 1,),(),(iiiiijjmjxvxajxExE, 2 , 1, 1,),(),(定理定理14-5:任意一个给定的矩阵对策在混合策略意义下一定有解。任意一个给定的矩阵对策在混合策略意义下一定有解。 矩阵对策的解可能不只一个,但对策值是唯一。矩阵对策的解可能不只一个,但对策值是唯一。证明:证明:考虑两个线性规划问题考虑两个线性规划问题mixxnjwxaPwiiiiiij,
4、 2 , 1, 01, 2 , 1,)(maxnjyymivyaDvjjjjjij, 2 , 1, 01, 2 , 1,)(min这是两个互为对偶的线性规划问题(这是两个互为对偶的线性规划问题(P266),), jjTawx1min,) 0 , 0 , 1 (1max,) 0 , 0 , 1 (iiTavy*)*,(*),*,(vywx*vw *,*21SySxiiijjijjxavya*,;,22121211ASSGASSG)(),(21LaAaAijijL)()()2() 1 (2112GTGTLVVGG)(),(21GTGT,;,12121211ASSGASSG0)()()2() 1 (
5、2112GTGTVVGG;,21ASSG)()()2(0) 1 (21GTGTVGTAA)(),(21GTGT;,21ASSG)(,212211ijmmaASSkjijki优优超超于于ilijlj优超于5432154321388065 . 57814959379520503023A5432154321388065 . 57864959379520503023A311423388065 . 5786495937优优于于优优于于,优优于于A2152154214354354364373065 . 56493738065 . 5764953742优优于于0,164370,163472121212143
6、434343yyyyvyyvyyxxxxvxxvxx5,) 0 , 0 , 0 , 2/ 1 , 2/ 1 (*,) 0 , 3/2 , 3/ 1 , 0 , 0(*GTTVyx22211211212122212121211121212221122211110,10,1aaaaDyyyyvyayavyayaxxxxvxaxavxaxa,25711323212211SSA 1 , 0,)1 ,(*xxxxTTxx)1 ,(321,vxxvxxvxx)1 ( 211,)1 ( 53 ,)1 ( 72OAxV752) 3()1 (211)2(,)1 (53) 1 (,)1 (72vxxvxxvxx1
7、x(1)3(2)11AB(3)OTTyyyyyyyyyyxvxvxxvxx)11/2 ,11/9 , 0 (*11/211/9,111/492511/49113, 0*,)11/8 ,11/3 (*,11/49,11/3,)1 ( 211)1 ( 53323232321,得得故故由由图图最最优优策策略略为为3212571132yyy2116672ATyy)1 ,(.)0 , 1 , 0(*14/95/ 1,)1 ,(*, 4/9, 5/ 1; 6,)1 (211,)1 (66 ,)1 (72221即只取得最优策略是,局中人最优策略是TTxyyyyyyvvyyvyyvyyyyA121166727
8、62) 3()1 (211)2(,)1 (66) 1 (,)1 (72vyyvyyvyyy(1)2(2)11(3)O6A1B2A2B17551243/84Avyyvyyvxxvxx)1 ( 7,)1 ( 24,)1 ( 72 ,)1 (4413132421432121712475123/847551243/8421431优优超超优优超超A4/13,) 8/3 , 0 , 0 , 8/5 (*,) 4/ 1 , 4/3 (*vyxTT 1 , 0,)1 ,(*xxxxT)4()1 (72)3()1 (54)2(,)1 (53/8)1 (,)1 (4vxxvxxvxxvxx751y(1)2(2)1
9、3/14(3)O43/4(4)*,*,4/13,*), 0*,*,(*, 0*,) 4/ 1 , 4/3 (*4214213yyyvyyyyyxTT1, 4/1375, 4/1323/84421421421yyyyyyyyy 矩阵对策的解法矩阵对策的解法1.优超原则化简优超原则化简,若有鞍点若有鞍点,则为纯矩阵对策则为纯矩阵对策. 2.若没有鞍点若没有鞍点,赢得矩阵为赢得矩阵为22阵阵.用公式法用公式法3.赢得矩阵为赢得矩阵为2n,或或m2阵阵.用图解法用图解法4.方程组法方程组法5.线性规划法线性规划法 3.2 线性规划法线性规划法定理定理14-4:设设 ,则,则 为为 的解的充要的解的充要
10、条件:存在数条件:存在数 使得使得 分别是不等式组(分别是不等式组( )和)和()的解。)的解。*,*21SySx*)*,(yxGv*,yxmixxnjvxaiiiiiij, 2 , 1, 01, 2 , 1,)(njyymivyajjjjjij, 2 , 1, 01, 2 , 1,)(mixxnjvxaPviiiiiij, 2 , 1, 01, 2 , 1,)(maxnjyymivyaDvjjjjjij, 2 , 1, 01, 2 , 1,)(minmixxnjvxaPviiiiiij, 2 , 1, 01, 2 , 1,)(maxnjyymiwyaDwjjjjjij, 2 , 1, 01,
11、 2 , 1,)(min0, 2 , 1,maxiiiijxnjvxav)(,0, 2 , 1, 11maxmaxDymiyayvwjjjijjjvxxii)(,0, 2 , 1, 1minzPxnjxaxiiiijiinmnmmnnmyyyaaaaaaaaaxxx2121222211121121vyyjjnjyymivyaDvjjjjjij, 2 , 1, 01, 2 , 1,)(min)min()1min(maxiixvv) 1 (011191921927min3213121321321xxxxxxxxxxxxxz,)2(011191921927max3213121321321yyyyyy
12、yyyyyyyw,) 3(0,11191921927max3213213312211321321uuuyyyuyyuyyuyyyyyyw,1109092927A1110000 1 7291001/70 1 2900101/20 19 0110011/9111000jc1y1u2y3y2u3ubXCBB321uuujjjzc ) 3(0,11191921927max3213213312211321321uuuyyyuyyuyyuyyyyyyw,1110000 2/9 024/910-7/90 7/9 09-22/9 01-2/91 1/9 1011/9001/901-2/900-1/9jc1y1
13、u2y3y2u3ubXCBB121yuujjjzc 1110000 4/810080/811-2/9-59/811 7/8101-22/8101/9-2/811 1/91011/9001/9014/810-1/9-7/81jc1y1u2y3y2u3ubXCBB121yyujjjzc 1110001 4/8000181/80-18/80-59/801 1/1001022/804/80-18/801 1/20100-99/8022/8081/80000-4/80-8/80-4/80jc1y1u2y3y2u3ubXCBB123yyyjjjzc TTGTTGGTTTTVyVxVzxWy)4/1 ,4/2,4/1()20/1 ,10/1 ,20/1(*)4/1 ,4/2,4/1()20/1 ,10/1 ,20/1(*16/8080/16)20/1 ,10/1 ,20/1()80/4,80/8,80/4(80/16)20/1 ,10/1 ,20/1()80/4,10/1 ,20/1(GjjVyy 矩阵对策的解法矩阵对策的解法1.优超原则化简优超原则化简,若有鞍点若有鞍点,则为纯矩阵对策则为纯矩阵对策. 2.若没有鞍点若没有鞍点,赢得矩阵为赢得矩阵为22阵阵.用公式法用公式法3.赢得矩阵为赢得矩阵为2n,或或m2阵阵.用图解法用图解法4.方程组法方程组法5.线性规划法线性规划法