产生的磁通密度为与电流I课件.ppt

上传人(卖家):三亚风情 文档编号:2958191 上传时间:2022-06-15 格式:PPT 页数:60 大小:3.11MB
下载 相关 举报
产生的磁通密度为与电流I课件.ppt_第1页
第1页 / 共60页
产生的磁通密度为与电流I课件.ppt_第2页
第2页 / 共60页
产生的磁通密度为与电流I课件.ppt_第3页
第3页 / 共60页
产生的磁通密度为与电流I课件.ppt_第4页
第4页 / 共60页
产生的磁通密度为与电流I课件.ppt_第5页
第5页 / 共60页
点击查看更多>>
资源描述

1、第六章:电磁感应2013年年4月月9日星期二日星期二电磁场与电磁波电磁场与电磁波第六章第六章 电磁感应电磁感应 作业:作业:6-1, 6-26-4,6-76-11第六章:电磁感应2013年年4月月9日星期二日星期二电磁场与电磁波电磁场与电磁波第六章第六章 电磁感应电磁感应 主主 要要 内内 容容电磁感应定律、自感与互感、磁场能量与力电磁感应定律、自感与互感、磁场能量与力1. 电磁感应定律电磁感应定律2. 电感电感3. 磁场能量磁场能量4. 磁场力磁场力第六章:电磁感应第六章:电磁感应2013年年4月月9日星期二日星期二电磁场与电磁波电磁场与电磁波第六章:电磁感应2013年年4月月9日星期二日星

2、期二电磁场与电磁波电磁场与电磁波1. 电磁感应定律电磁感应定律 当闭合线圈中的磁通当闭合线圈中的磁通,线圈中产生的感应电动,线圈中产生的感应电动势势 e 为为 tedd式中电动势式中电动势 e 的的正方向正方向与磁通方向构成与磁通方向构成右旋右旋关系。关系。 当磁通当磁通增加增加时,感应电动势的实际方向与磁通方向构成时,感应电动势的实际方向与磁通方向构成左左旋旋关系;反之,当磁通关系;反之,当磁通减少减少时,电动势的实际方向与磁通方向时,电动势的实际方向与磁通方向构成构成右旋右旋关系。关系。 eImSB dS第六章:电磁感应2013年年4月月9日星期二日星期二电磁场与电磁波电磁场与电磁波 感应

3、电流产生的感应电流产生的感应磁通感应磁通方向方向总是总是阻碍阻碍原有磁通的变化,所以感原有磁通的变化,所以感应磁通又称为应磁通又称为反磁通反磁通。 感应电场强度感应电场强度 E 沿线圈回路的闭合线积分等于沿线圈回路的闭合线积分等于线圈中的感应电动势,即线圈中的感应电动势,即 dddlet El又知又知 ,得,得SSB d ddlSt ElBS上式称为上式称为电磁感应定律电磁感应定律,它表明它表明时变磁场时变磁场可以产生可以产生时变电场时变电场。 eI第六章:电磁感应2013年年4月月9日星期二日星期二电磁场与电磁波电磁场与电磁波第六章:电磁感应2013年年4月月9日星期二日星期二电磁场与电磁波

4、电磁场与电磁波根据旋度定理,由上式得根据旋度定理,由上式得 0d)( SBESt 该式对于该式对于任一任一回路面积回路面积 S 均成立,因此,均成立,因此,其被积函数一定为零,即其被积函数一定为零,即t BE此为电磁感应定律的此为电磁感应定律的微分形式微分形式。它表明。它表明某点某点磁通密度磁通密度的时间变化率的时间变化率负负值等于值等于该点该点时变电场强度的旋度时变电场强度的旋度。 电磁感应定律是描述时变电磁场著名的电磁感应定律是描述时变电磁场著名的麦克斯麦克斯韦方程组韦方程组中的方程之一。中的方程之一。 第六章:电磁感应2013年年4月月9日星期二日星期二电磁场与电磁波电磁场与电磁波2.

5、电感电感 在在线性线性介质中,介质中, 单个闭合回路电流产生的磁单个闭合回路电流产生的磁通密度与回路电流通密度与回路电流 I 成成正比正比,因此穿过回路的,因此穿过回路的磁磁通通也与回路也与回路电流电流 I 成正比。成正比。式中式中L 称为回路的称为回路的电感电感,单位为,单位为H(亨亨)。 与回路电流与回路电流 I 交链的磁通称为回路电流交链的磁通称为回路电流 I 的的磁通链磁通链,以,以 表示。表示。IL令令 与与 I 的比值为的比值为L,即,即电感又可理解为与电感又可理解为与单位单位电流交链的电流交链的磁通链磁通链。 第六章:电磁感应2013年年4月月9日星期二日星期二电磁场与电磁波电磁

6、场与电磁波 单个回路的电感仅与回路的单个回路的电感仅与回路的形状形状及及尺寸有关尺寸有关,与回路中与回路中电流无关电流无关。 磁通链与磁通磁通链与磁通不同不同,磁通链是指与某磁通链是指与某电流交链电流交链的磁通的磁通。 若交链若交链 N 次,则磁通链增加次,则磁通链增加 N 倍;倍; 若若部分部分交交链,则必须给予适当的链,则必须给予适当的折扣折扣。因此,与。因此,与N 匝回路电匝回路电流流 I 交链的磁通链为交链的磁通链为 = N 。INIL由由 N 匝回路组成的线圈的电感为匝回路组成的线圈的电感为第六章:电磁感应2013年年4月月9日星期二日星期二电磁场与电磁波电磁场与电磁波1. 磁通与磁

7、通链磁通与磁通链3.3.3 电感电感 C 回路回路l 磁通磁通dddSSCBSASAl l 磁磁通通链链CI电流回路电流回路特征:回路可以是任意几何回路特征:回路可以是任意几何回路与所有电流回路铰链的总磁通与所有电流回路铰链的总磁通特征:特征:l 回路是电流回路回路是电流回路l 计入电流存在的所有回路计入电流存在的所有回路l 每个回路是计入与之铰链的全每个回路是计入与之铰链的全部磁通部磁通 I第六章:电磁感应2013年年4月月9日星期二日星期二电磁场与电磁波电磁场与电磁波n: 为磁场铰链的电流与回路为磁场铰链的电流与回路电流电流I 之比之比(不一定为整数不一定为整数) n 单匝线圈单匝线圈 多

8、匝线圈多匝线圈CI 细回路细回路 粗导线回路粗导线回路 iCI o粗回路粗回路l 磁磁链计算链计算oi o :外磁链;外磁链; i :内磁链内磁链第六章:电磁感应2013年年4月月9日星期二日星期二电磁场与电磁波电磁场与电磁波LI称为导体回路称为导体回路 C 的的自感系数,自感系数,简称简称自感自感。 外自感外自感iiLIooLI2. 自感自感 内自感;内自感;粗导体回路的自感:粗导体回路的自感:L = Li + Lo 自感只与回路的几何形状、尺寸以及周围自感只与回路的几何形状、尺寸以及周围的磁介质有关,与的磁介质有关,与电流和磁链的大小电流和磁链的大小无关。无关。 自感的特点自感的特点:特征

9、:磁通链是特征:磁通链是I自已产生的自已产生的 iCI o粗回粗回路路第六章:电磁感应第六章:电磁感应2013年年4月月9日星期二日星期二电磁场与电磁波电磁场与电磁波bcaO 例例1 计算载有计算载有直流直流电流的同轴线电流的同轴线单位单位长度内的长度内的电感。电感。 解解 设同轴线内导体的半径为设同轴线内导体的半径为a,外导体的内半径为,外导体的内半径为b,外半径,外半径为为c,如图示。,如图示。 在同轴线中取出在同轴线中取出单位长度单位长度,沿长度方向形成一个沿长度方向形成一个矩形回路矩形回路。 内导体内导体中的电流归并为矩中的电流归并为矩形回路的形回路的内边内边电流,电流,外导体外导体中

10、中的电流归并为的电流归并为外边外边电流。电流。 IrcbaOdrIIeO第六章:电磁感应2013年年4月月9日星期二日星期二电磁场与电磁波电磁场与电磁波同轴线单位长度的电感定义为同轴线单位长度的电感定义为 IL1式中,式中,I 为同轴线中的电流;为同轴线中的电流; 是单位长度内与是单位长度内与电流电流 I 交链的交链的磁通链磁通链。 该磁通链由三部分磁通形成:该磁通链由三部分磁通形成:外外导体中的磁通,导体中的磁通,内、外导体内、外导体之间之间的磁通以及的磁通以及内内导体中的磁通。导体中的磁通。由于外导体通常很簿,穿过其内的磁通可以由于外导体通常很簿,穿过其内的磁通可以忽略忽略。内外导体之间内

11、外导体之间的磁通密度的磁通密度 Bo 为为 eBrI20o第六章:电磁感应2013年年4月月9日星期二日星期二电磁场与电磁波电磁场与电磁波0oooodddln2bbSaaIbB raBSBer该外磁通与电流该外磁通与电流 I 完全完全交链,故外磁通与磁通链交链,故外磁通与磁通链相等相等。 内导体中的磁通密度内导体中的磁通密度 Bi 为为2002222iIrI rBraa该磁场形成的磁通称为该磁场形成的磁通称为内磁通内磁通,以,以 表示。那么穿过表示。那么穿过宽度为宽度为dr的单位长度截面的内磁通的单位长度截面的内磁通 为为iidraIrd2d20ieBrI20o该磁场形成的磁通称为该磁场形成的

12、磁通称为外磁通外磁通,以,以 表示,则单位长表示,则单位长度内的外磁通为度内的外磁通为o第六章:电磁感应2013年年4月月9日星期二日星期二电磁场与电磁波电磁场与电磁波 该该部分部分磁通仅与内导体磁通仅与内导体中中部分部分电流电流 I 交链。因此,交链。因此,对于对于总总电流电流 I 来说,这部分来说,这部分磁通折合成与总电流磁通折合成与总电流 I 形成形成的磁通链应为的磁通链应为raIrIId2dd430ii 求得内导体中的磁场对求得内导体中的磁场对总总电流电流 I 提供的磁通提供的磁通链链 i 为为aI 0 0ii8draIrd2d20ibcaOIrcbaOdrIIeO第六章:电磁感应20

13、13年年4月月9日星期二日星期二电磁场与电磁波电磁场与电磁波那么,与总电流那么,与总电流 I 交链的总磁通链为交链的总磁通链为(o + i ) 。因此,同轴线的单位长度内电感为因此,同轴线的单位长度内电感为8ln200io1abIL式中第一项称为式中第一项称为外电感外电感;第二项称为;第二项称为内电感内电感。 当同轴线传输当同轴线传输电磁波电磁波时,内外导体中的磁通时,内外导体中的磁通均可忽略,同轴线单位长度内的电感等于均可忽略,同轴线单位长度内的电感等于外外电感,电感,即即 abLln201第六章:电磁感应2013年年4月月9日星期二日星期二电磁场与电磁波电磁场与电磁波 解解:由安培环路定理

14、,得由安培环路定理,得2222202220rIeraaIearbHrIcrebrcr cbrcabc单位长度的总自感单位长度的总自感422000m22222223lnln822 ()4()WbcccbLIacbbcb内导体的内自感内导体的内自感内外导体间的外自感内外导体间的外自感外导体的内自感外导体的内自感第六章:电磁感应lNN l:a0zrlBzBzIN :a0B 第六章:电磁感应22()()()zSN B dSNaB nNaB mSNNB dS 2()zBLNaII0zrlBIN 220()rlLaN lI 第六章:电磁感应:a:ab02NIBB:b0B 0B 002d brmSaNIB

15、dSd dz 0ln()2rmNIdb a 第六章:电磁感应20ln()2rmN IdNb a 20ln()2rN dLb aHI :ab(2)lNNR0rlBN I :R0()rlNN I A :A20(2)rLN ARH 第六章:电磁感应电磁场与电磁波电磁场与电磁波求双线传输线长度为求双线传输线长度为l l的自感。导线半径为的自感。导线半径为a a,导线间距离,导线间距离Da,Da,如图所示如图所示yxx解:由解:由dIHl得二导线在得二导线在x x处产生的磁场分别为处产生的磁场分别为2,22yyIIxDx1HeHe总的磁感应强度总的磁感应强度002112yIxDx1BHHe外自感为外自感

16、为内自感为内自感为000284llLdxD000lnlnllD aDLIaa00ln4llDLa总自感为总自感为第六章:电磁感应2013年年4月月9日星期二日星期二电磁场与电磁波电磁场与电磁波 与与I1交链的交链的磁通链磁通链由由两两部分磁通形成,其一是部分磁通形成,其一是 I1本本身身的磁通形成的磁通链的磁通形成的磁通链 11 ,另一是另一是 I2 在回路在回路 l1 中的磁通中的磁通形成的磁通链形成的磁通链 12 。 dl1Ozyxdl2l2l1I2I1r2 - r1r2r1那么,与电流那么,与电流 l1 交链的磁通链交链的磁通链1为为12111同理,与电流同理,与电流 I2 交链的磁通链

17、交链的磁通链2为为22212互感互感第六章:电磁感应2013年年4月月9日星期二日星期二电磁场与电磁波电磁场与电磁波 在在线性线性介质中,比值介质中,比值 , , 及及 均为均为常数。常数。111I212I222I121I式中式中L11称为回路称为回路 l1的的自感自感,M12称为回路称为回路 l2 对对 l1 的的互感互感。同理定义同理定义22222IL12121IM式中式中L22 称为回路称为回路 l2的的自感自感,M21称为回路称为回路 l1对对 l2的的互感互感。 11111IL21212IM令令第六章:电磁感应2013年年4月月9日星期二日星期二电磁场与电磁波电磁场与电磁波将上述参数

18、将上述参数 L11,L22,M12 及及 M21 代入前式,得代入前式,得 2121111IMIL2221212ILIM可以证明,任意两个回路之间的可以证明,任意两个回路之间的互感公式互感公式为(见后面推导)为(见后面推导) 211221 21d d 4llM llrr 122112 12d d 4llM llrr 考虑到考虑到 ,由上两式可见,由上两式可见21121221,ddddrrrrllll2112MM第六章:电磁感应2013年年4月月9日星期二日星期二电磁场与电磁波电磁场与电磁波SBdS磁通密度磁通密度B通过某一表面通过某一表面S的通量称为磁通:的通量称为磁通:(1)矢量磁位:矢量磁

19、位:BA 212SSlBdSAdSAdl 由上两个公式可以得到由上两个公式可以得到(电流(电流I1在回路在回路l2中产生的磁通链)中产生的磁通链):11111112121( )( )( )4|4|llI rI rdlA rdlrrrrA1为电流为电流I1在回路在回路l2所在处产生的矢量磁位,因此所在处产生的矢量磁位,因此:(3)(2)将公式(将公式(3)代入公式()代入公式(1),得:),得:211212121( )4|llI rdl dlrr 21211MI211221 21d d 4llM llrr第六章:电磁感应2013年年4月月9日星期二日星期二电磁场与电磁波电磁场与电磁波211221

20、 21dd4llM llrr 122112 12dd4llM llrr 在电子电路中,若要在电子电路中,若要增强增强两个线圈的耦合,应彼此两个线圈的耦合,应彼此平行平行放置;若要放置;若要避免避免两个线圈的耦合,则应相互两个线圈的耦合,则应相互垂直垂直。互感互感可可正正可可负负,但,但电感电感始终为始终为正值正值。 若互磁通与原磁通方向若互磁通与原磁通方向相同相同,则磁通链,则磁通链增加增加,互感,互感应为应为正正值;反之,若两者方向值;反之,若两者方向相反相反,则磁通链,则磁通链减少减少,互感为互感为负负值。值。若若处处处处 ,则互感,则互感 。02112 MM12ddll若若处处处处 ,则

21、互感,则互感 M 最大最大。12d / dll第六章:电磁感应2013年年4月月9日星期二日星期二电磁场与电磁波电磁场与电磁波 例例1 计算无限长直导线与矩形线圈之间的互感。计算无限长直导线与矩形线圈之间的互感。设线圈与导线平行,周围介质为真空,如图所示。设线圈与导线平行,周围介质为真空,如图所示。abdrrD0I1I2zS2 解解 建立圆柱坐标系,令建立圆柱坐标系,令 z 轴轴方向与电流方向与电流 I1一致,则一致,则 I1 产生的磁产生的磁通密度为通密度为 eBrI 2101与电流与电流I I2交链的磁通链交链的磁通链21 为为 2d121SSB第六章:电磁感应2013年年4月月9日星期二

22、日星期二电磁场与电磁波电磁场与电磁波求得求得0ln2012121DbDaIM 若电流若电流I I2为逆时针方向时,为逆时针方向时,则则B1与与dS 反向,反向, M21 为负。为负。 若电流若电流I I2为为如图所示的顺时针方向,则如图所示的顺时针方向,则dS 与与B1方向相同。那么方向相同。那么bDDDbDaIrraI 101021ln2d12abdrrD0I1I2zS2但在任何线性介质中但在任何线性介质中2112MM第六章:电磁感应2013年年4月月9日星期二日星期二电磁场与电磁波电磁场与电磁波3. 磁场能量磁场能量 若加入若加入外源外源,回路中产生电流。,回路中产生电流。在电流建立过程中

23、,回路中产生的在电流建立过程中,回路中产生的反反磁通企图阻碍电流增长,为了克磁通企图阻碍电流增长,为了克服反磁通产生反电动势,服反磁通产生反电动势,外源外源必须必须作功作功。 若电流变化非常若电流变化非常缓慢缓慢,可以不计,可以不计辐射辐射损失,则外损失,则外源输出的能量源输出的能量全部全部储藏在储藏在磁场磁场中中。 根据在建立磁场过程中根据在建立磁场过程中外源外源作的作的功功即可计算磁场即可计算磁场能量能量。eIB第六章:电磁感应2013年年4月月9日星期二日星期二电磁场与电磁波电磁场与电磁波 设设单个单个回路的回路的电流电流从从零零开始开始逐渐逐渐缓慢缓慢地增加到地增加到最终值最终值 I,

24、因而,因而回路回路磁通磁通也由也由零值零值逐渐缓慢地增逐渐缓慢地增加到加到最终值最终值 。te dd反电动势为反电动势为eIB 为了克服这个反电动势,外源必须在回路中产为了克服这个反电动势,外源必须在回路中产生的生的电压电压 。eUteU dd即即第六章:电磁感应2013年年4月月9日星期二日星期二电磁场与电磁波电磁场与电磁波 若时刻若时刻 t 回路中的电流为回路中的电流为 i(t) ,则此时刻回路,则此时刻回路中的中的瞬时功率瞬时功率为为 ttiUtitP dd)()()(在在d t 时间内外源作的时间内外源作的功功为为 d)(d)(d)(dtitittPW单个回路的单个回路的磁通链磁通链与

25、与电流电流的关系为的关系为 。 )()(tLit 那么,在那么,在线性线性介质中,求得介质中,求得 d t 时间内外源作时间内外源作的的功功为为 iLtitiW d)(d)(d第六章:电磁感应2013年年4月月9日星期二日星期二电磁场与电磁波电磁场与电磁波当回路电流增至最终值当回路电流增至最终值 I 时,外源作的时,外源作的总功总功 W 为为ILIitLiW 0 221d)( 因电流增长很慢,辐射损失可以忽略,外源作的因电流增长很慢,辐射损失可以忽略,外源作的功功完全完全转变为周围磁场的能量。转变为周围磁场的能量。若以若以 Wm 表示表示磁场能量磁场能量,那么,那么2m21LIW 2m2IWL

26、上式又可改写为上式又可改写为利用此式利用此式计算电感计算电感十分方便。十分方便。第六章:电磁感应2013年年4月月9日星期二日星期二电磁场与电磁波电磁场与电磁波 考虑到考虑到 ,则,则单个单个回路电流的磁场能量又可回路电流的磁场能量又可表示为表示为ILIW21m式中,式中, 为与电流为与电流 I 交链的交链的磁通链磁通链。 对于对于 N 个回路,可令各个回路电流均以个回路,可令各个回路电流均以同一比同一比例同时例同时由由零值零值缓慢地增加到缓慢地增加到最终值最终值。NjNjjjjjjIMILIMIM2211 已知各回路已知各回路磁通链磁通链与其与其电流电流之间的关系是之间的关系是线性线性的,第

27、的,第j 个回路的磁通链个回路的磁通链 j 为为式中式中Ij 为电流为电流最终值最终值。第六章:电磁感应2013年年4月月9日星期二日星期二电磁场与电磁波电磁场与电磁波第第 j 个回路在时刻个回路在时刻 t 的电流为的电流为jjItti)()(10NjjjNjjjIttiW11d)(d)(d在在 dt 时间内,时间内,外源外源在在 N 个回路中作的个回路中作的功功为为NjNjjjjjjIMILIMIM2211那么,在同一时刻该回路的磁通链为那么,在同一时刻该回路的磁通链为jNjNjjjjjjttiMtiLtiMtiMt)()()()()()(2211第六章:电磁感应2013年年4月月9日星期二

28、日星期二电磁场与电磁波电磁场与电磁波那么,具有最终值电流的那么,具有最终值电流的 N 个回路产生的磁场个回路产生的磁场能量为能量为 1 0 1mdNjjjIWNjjjIW1m21 当各个回路电流均达到当各个回路电流均达到最终值最终值时,外源作时,外源作的的总功总功 W 为为WWd 若已知各个回路的若已知各个回路的电流电流及及磁通链磁通链,由上式,由上式即可计算即可计算N 个回路共同产生的个回路共同产生的磁场能量磁场能量。 第六章:电磁感应2013年年4月月9日星期二日星期二电磁场与电磁波电磁场与电磁波 已知回路磁通可用已知回路磁通可用矢量磁位矢量磁位 A 表示为表示为 ,因此第因此第 j 个回

29、路的磁通链可用矢量磁位个回路的磁通链可用矢量磁位 A 表示为表示为 l dlA jlj d lA NjljjjIW1 md 21lA那么,那么,N 个回路的磁场能量又可用个回路的磁场能量又可用矢量磁位矢量磁位表示为表示为式中式中 A 为周围回路电流在第为周围回路电流在第 j 个回路所在处产生的个回路所在处产生的合成合成矢量磁位。矢量磁位。 第六章:电磁感应2013年年4月月9日星期二日星期二电磁场与电磁波电磁场与电磁波VIddJl 若电流分布在体积若电流分布在体积V中,电流密度为中,电流密度为J,已,已知知 ,则上式变为,则上式变为体积分体积分,此时磁场能量可以,此时磁场能量可以表示为表示为m

30、1d2VWVA J式中式中V 为体电流所占据的体积。为体电流所占据的体积。 对于面电流,则产生的磁场能量为对于面电流,则产生的磁场能量为 m1d2SSWSA J式中式中S 为面电流所在的面积。为面电流所在的面积。 NjljjjIW1 md 21lA第六章:电磁感应2013年年4月月9日星期二日星期二电磁场与电磁波电磁场与电磁波磁能密度磁能密度 利用矢量恒等式利用矢量恒等式 ,上式又可写为上式又可写为AHHAAH)(m11()dd22VVWVVHAHA若将积分区域扩大到若将积分区域扩大到无限远处无限远处,上式仍然成立。,上式仍然成立。m 1d2VWVAH已知已知 ,代入,代入 ,得,得 JH V

31、VW md21JA式中,式中, V 为电流所在的区域。为电流所在的区域。第六章:电磁感应2013年年4月月9日星期二日星期二电磁场与电磁波电磁场与电磁波 令令 S 为半径无限大的球面,则由散度定理知,为半径无限大的球面,则由散度定理知,上式第一项的上式第一项的SAHAHd)(21d )(21 SVVm 11()dd22VVWVVHAHAVWVd 21mAH 0d)( SAHS当电流分布在当电流分布在有限有限区域时,区域时, , ,因此,因此21rH rA1考虑到考虑到 ,求得,求得BAVWVd )(21 mBH上式中的上式中的被积函数被积函数即是磁场即是磁场密度密度。 第六章:电磁感应2013

32、年年4月月9日星期二日星期二电磁场与电磁波电磁场与电磁波若以小写字母若以小写字母 wm 表示表示磁能密度磁能密度,则,则BH 21mw 已知已知各向同性各向同性的的线性线性介质,介质, ,因此磁场,因此磁场能量密度又可表示为能量密度又可表示为 HB2m21Hw 可见,磁场能量与磁场强度可见,磁场能量与磁场强度平方平方成正比,磁场成正比,磁场能量能量不符合不符合叠加原理。叠加原理。 第六章:电磁感应2013年年4月月9日星期二日星期二电磁场与电磁波电磁场与电磁波磁场磁场和和电场电场的的能量能量计算方法计算方法2m11 22WLII2e11 22QWQC1m12NjjjWI1m 111ddd222

33、jNjjSlSVjWISV AlA JA Jm1;2w H B2m12wH单个回路:单个回路:N 个回路:个回路:分布电流:分布电流:磁能密度:磁能密度:1e12NiiiWQ e111 d d d222lSlSVWlSV ee211; 22wwEE D第六章:电磁感应2013年年4月月9日星期二日星期二电磁场与电磁波电磁场与电磁波 例例 设同轴线中通过的恒定电流为设同轴线中通过的恒定电流为I,内导体的,内导体的半径为半径为a,外导体的厚度可以忽略,其半径为,外导体的厚度可以忽略,其半径为b,内,内外导体之间为真空。计算该同轴线中外导体之间为真空。计算该同轴线中单位长度单位长度内的内的磁场能量。

34、磁场能量。 解解 已知同轴线单位长度已知同轴线单位长度内的内的电感电感为为abLln28001因此,单位长度内同轴线中磁场能量为因此,单位长度内同轴线中磁场能量为 abIIILWln416212020211mbaOI0第六章:电磁感应2013年年4月月9日星期二日星期二电磁场与电磁波电磁场与电磁波已知已知内内导体中的磁场强度为导体中的磁场强度为 22000ii221aIraIrBH也可通过也可通过磁场密度磁场密度计算同轴线的磁场能量。计算同轴线的磁场能量。因此因此内内导体中单位长度内的磁场能量为导体中单位长度内的磁场能量为22 20mii02 011d2 d22216aVIIrWHVr ra又

35、知又知内、外内、外导体之间的磁场强度导体之间的磁场强度 Ho 为为rIBH20oo第六章:电磁感应2013年年4月月9日星期二日星期二电磁场与电磁波电磁场与电磁波所以所以内外内外导体之间单位长度内的磁场能量为导体之间单位长度内的磁场能量为 2 20mo0o 12 dln24baIbWHr ra20mi16IW此结果与前式完全相同。此结果与前式完全相同。 单位长度内同轴线的磁场能量应为单位长度内同轴线的磁场能量应为 ,即,即)(momiWW2200mimoln164IIbWWa第六章:电磁感应zlHzHzIN2221122mlwHI N2221()2mlWI Nal22221()2mlWLNal

36、I220()rlLaN lH lNN l第六章:电磁感应2013年年4月月9日星期二日星期二电磁场与电磁波电磁场与电磁波4. 磁场力磁场力 dl1Ozyxdl2l2l1I2I1r2 r1r2r1已知已知BlF dI式中的磁通密度式中的磁通密度B1为为10112113 21d()( )4lIlrrB rrr因此,因此, B1 对于整个回路对于整个回路 l2 的作用力的作用力F21 为为 120221121213 21d d()4llII llrrFrr 12221ddBlF I那么,由回路电流那么,由回路电流 I1 产生的产生的磁场磁场 B1对于电流元对于电流元 I2dl 的作的作用力用力 dF

37、21为为第六章:电磁感应2013年年4月月9日星期二日星期二电磁场与电磁波电磁场与电磁波 同理,回路电流同理,回路电流 I2 产生的磁场产生的磁场 B2 对于整个回路对于整个回路 l1 的作用力的作用力F12 为为 120112212123 12d d()4llIIllrrFrr 上述两式称为上述两式称为安培定律安培定律。根据根据牛顿定律牛顿定律得知,应该得知,应该 。1221FF如果回路形状如果回路形状复杂复杂,上述积分计算非常困难。,上述积分计算非常困难。 磁场力的计算也可采用磁场力的计算也可采用虚位移虚位移方法,通过方法,通过能量关能量关系系可以导出计算磁场力的公式。可以导出计算磁场力的

38、公式。 直接利用前述直接利用前述广义力广义力和和广义坐标广义坐标的概念,导出计的概念,导出计算磁场力的一般公式。算磁场力的一般公式。第六章:电磁感应2013年年4月月9日星期二日星期二电磁场与电磁波电磁场与电磁波 设在电流设在电流 I1 产生的磁场产生的磁场广义力广义力 F 的作用下,的作用下,使得回路使得回路 l2 的某一的某一广义坐标广义坐标变化的增量为变化的增量为dl,同时,同时磁场能量磁场能量的增量为的增量为 dWm 。下面分为下面分为两种两种情况分别导出磁场力的计算公式。情况分别导出磁场力的计算公式。 lFWWdddm 两个回路中的外源作的两个回路中的外源作的总功总功dW应该等于磁场

39、应该等于磁场广义力作的广义力作的功功与磁场能量的与磁场能量的增量增量之之和和,即,即第六章:电磁感应2013年年4月月9日星期二日星期二电磁场与电磁波电磁场与电磁波 第一第一,若电流,若电流 I1 和和 I2 不变,这种情况称为不变,这种情况称为常电流常电流系统,则磁场能量的增量为系统,则磁场能量的增量为 2211md21d21dIIW两个回路中两个回路中外源外源作的功分别为作的功分别为 111ddIW 222ddIW m21d2dddWWWW两个回路中的外源作的两个回路中的外源作的总总功功 dW 为为lFWWdd2dmm即即求得求得常电流常电流系统中的广义力系统中的广义力F 为为 mIWFl

40、常数第六章:电磁感应2013年年4月月9日星期二日星期二电磁场与电磁波电磁场与电磁波 第二第二,若各回路中的磁通链不变,即磁通未,若各回路中的磁通链不变,即磁通未变,这种情况称为变,这种情况称为常磁通常磁通系统。系统。求得求得常磁通常磁通系统中广义力为系统中广义力为mWFl 常数 由于各个回路的由于各个回路的磁通未变磁通未变,因此,各个回路,因此,各个回路位移过程中不会产生位移过程中不会产生新的新的电动势,因而外源作的电动势,因而外源作的功为功为零零,lFWdd0m即即磁场力的应用比电场力更为广泛,而且力量更强磁场力的应用比电场力更为广泛,而且力量更强。第六章:电磁感应2013年年4月月9日星

41、期二日星期二电磁场与电磁波电磁场与电磁波静静 电电 场场恒定磁场恒定磁场物理量物理量介质特性介质特性场方程式场方程式边界条件边界条件能量密度能量密度力力0E无旋无旋0 B无散无散 D有散有散JH 有旋有旋电场强度电场强度 E磁通密度磁通密度 B电通密度电通密度 D磁场强度磁场强度 H介电常数介电常数 磁导率磁导率 ED HB t2t 1EE n2n1BBn1n2DDt 1t2HHBH 21mwED21ew常数lWFm常数lWFe常数IlWFm常数qlWFe第六章:电磁感应2013年年4月月9日星期二日星期二电磁场与电磁波电磁场与电磁波 例例1 计算无限长的计算无限长的载流导线载流导线与矩形与矩

42、形电流环电流环之之间的作用力。电流环的尺寸及位置如图所示。间的作用力。电流环的尺寸及位置如图所示。abD0I1I2 解解 设位移过程中设位移过程中电流不变电流不变,则,则导线与电流环之间的相互作用力为导线与电流环之间的相互作用力为常数IlWFm2211m2121IIW式中式中22212122121111ILIMIMIL又知又知MMM2112MIILILIW2122221121m2121得得第六章:电磁感应2013年年4月月9日星期二日星期二电磁场与电磁波电磁场与电磁波 取广义坐标取广义坐标 l 为间距为间距 D ,因,因 L11 及及 L22 与与D 无关,无关,得得DMIIF21又知互感又知

43、互感 M 为为 0ln2aDbMDDbDabIIF)(2021求得求得式中的式中的负号负号表明作用力的实际方向为间距表明作用力的实际方向为间距D 减小减小方向,方向,即即F 为为吸引力吸引力。MIILILIW2122221121m2121 若两个电流之一的方向与图示若两个电流之一的方向与图示方向相反方向相反,则,则M 为为负,负,F 0,表明,表明 F 为为排斥力排斥力。 第六章:电磁感应2013年年4月月9日星期二日星期二电磁场与电磁波电磁场与电磁波例例2 计算电磁铁的吸引力。计算电磁铁的吸引力。B0SIl 解解 铁心可以当作铁心可以当作理想导磁理想导磁体体,铁,铁心心中的磁场强度为中的磁场

44、强度为零零。气隙中的磁通气隙中的磁通 ,得,得 SB0SlW02m 可见,为了计算电磁铁的吸引力,将系统当作可见,为了计算电磁铁的吸引力,将系统当作常磁通常磁通系统较为简便系统较为简便。 020020m 212SlBSlBW 磁场能量磁场能量仅分布在仅分布在两个气两个气隙隙中,因此总磁能中,因此总磁能 Wm 为为第六章:电磁感应2013年年4月月9日星期二日星期二电磁场与电磁波电磁场与电磁波02002mSBSlWF常数最后求得最后求得式中的负号表明式中的负号表明F 为为吸引力吸引力。 可见,电磁铁的可见,电磁铁的吸力吸力与磁铁的横截面与磁铁的横截面面积面积及及气隙中气隙中磁通密度磁通密度的的平方平方成正比。成正比。第六章:电磁感应2013年年4月月9日星期二日星期二电磁场与电磁波电磁场与电磁波 磁场计算:假设非理想导磁体磁场计算:假设非理想导磁体12120()2 ()2ggBBH llHlLLlNI边界条件:边界条件:B=Bg1202lllNIB

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 办公、行业 > 各类PPT课件(模板)
版权提示 | 免责声明

1,本文(产生的磁通密度为与电流I课件.ppt)为本站会员(三亚风情)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!


侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|