1、第十章第十章 统计回归模型统计回归模型10.1 牙膏的销售量牙膏的销售量10.2 软件开发人员的薪金软件开发人员的薪金10.3 酶促反应酶促反应10.4 投资额与国民生产总值和投资额与国民生产总值和 物价指数物价指数回归模型是用回归模型是用统计分析方法建立的最常用的一类模型统计分析方法建立的最常用的一类模型 数学建模的基本方法数学建模的基本方法机理分析机理分析测试分析测试分析通过对数据的统计分析,找出与数据拟合最好的模型通过对数据的统计分析,找出与数据拟合最好的模型 不涉及回归分析的数学原理和方法不涉及回归分析的数学原理和方法 通过实例讨论如何选择不同类型的模型通过实例讨论如何选择不同类型的模
2、型 对软件得到的结果进行分析,对模型进行改进对软件得到的结果进行分析,对模型进行改进 由于客观事物内部规律的复杂及人们认识程度的限制由于客观事物内部规律的复杂及人们认识程度的限制,无法分析实际对象内在的因果关系,建立合乎机理规无法分析实际对象内在的因果关系,建立合乎机理规律的数学模型。律的数学模型。 10.1 牙膏的销售量牙膏的销售量 问问题题建立牙膏销售量与价格、广告投入之间的模型建立牙膏销售量与价格、广告投入之间的模型 预测在不同价格和广告费用下的牙膏销售量预测在不同价格和广告费用下的牙膏销售量 收集了收集了30个销售周期本公司牙膏销售量、价格、个销售周期本公司牙膏销售量、价格、广告费用,
3、及同期其它厂家同类牙膏的平均售价广告费用,及同期其它厂家同类牙膏的平均售价 9.260.556.804.253.70307.930.055.803.853.80298.510.256.754.003.7527.38-0.055.503.803.851销售量销售量(百万支百万支)价格差价格差(元)(元)广告费用广告费用(百万元百万元)其它厂家其它厂家价格价格(元元)本公司价本公司价格格(元元)销售销售周期周期基本模型基本模型y 公司牙膏销售量公司牙膏销售量x1其它厂家与本公司其它厂家与本公司价格差价格差x2公司广告费用公司广告费用110 xy222210 xxy55.566.577.577.58
4、8.599.510 x2y-0.200.20.40.677.588.599.510 x1y22322110 xxxyx1, x2解释变量解释变量(回归变量回归变量, 自变量自变量) y被解释变量(因变量)被解释变量(因变量) 0, 1 , 2 , 3 回归系数回归系数 随机随机误差(误差(均值为零的均值为零的正态分布随机变量)正态分布随机变量)MATLAB 统计工具箱统计工具箱 模型求解模型求解b,bint,r,rint,stats=regress(y,x,alpha) 输入输入 x= n 4数数据矩阵据矩阵, 第第1列为全列为全1向量向量1 2221xxxalpha(置信置信水平水平,0.0
5、5) 22322110 xxxyb 的的估计值估计值 bintb的置信区间的置信区间 r 残差向量残差向量y-xb rintr的置信区间的置信区间 Stats检验统计量检验统计量 R2,F, p yn维数据向量维数据向量输出输出 由数据由数据 y,x1,x2估计估计 参数参数参数估计值参数估计值置信区间置信区间17.32445.7282 28.92061.30700.6829 1.9311 -3.6956-7.4989 0.1077 0.34860.0379 0.6594 R2=0.9054 F=82.9409 p=0.0000 0 1 2 3结果分析结果分析y的的90.54%可由模型确定可由
6、模型确定 参数参数参数估计值参数估计值置信区间置信区间17.32445.7282 28.92061.30700.6829 1.9311 -3.6956-7.4989 0.1077 0.34860.0379 0.6594 R2=0.9054 F=82.9409 p=0.0000 0 1 2 322322110 xxxyF远超过远超过F检验的临界值检验的临界值 p远小于远小于 =0.05 2的置信区间包含零点的置信区间包含零点(右端点距零点很近右端点距零点很近) x2对因变量对因变量y 的的影响不太显著影响不太显著x22项显著项显著 可将可将x2保留在模型中保留在模型中 模型从整体上看成立模型从整
7、体上看成立22322110 xxxy销售量预测销售量预测 价格差价格差x1=其它厂家其它厂家价格价格x3-本公司本公司价格价格x4估计估计x3调整调整x4控制价格差控制价格差x1=0.2元,投入广告费元,投入广告费x2=650万元万元销售量预测区间为销售量预测区间为 7.8230,8.7636(置信度(置信度95%)上限用作库存管理的目标值上限用作库存管理的目标值 下限用来把握公司的现金流下限用来把握公司的现金流 若估计若估计x3=3.9,设定,设定x4=3.7,则可以,则可以95%的把握的把握知道销售额在知道销售额在 7.8320 3.7 29(百万元)以上(百万元)以上控制控制x1通过通过
8、x1, x2预测预测y2933.822322110 xxxy(百万支百万支)模型改进模型改进x1和和x2对对y的的影响独立影响独立 22322110 xxxy21422322110 xxxxxy参数参数参数估计值参数估计值置信区间置信区间17.32445.7282 28.92061.30700.6829 1.9311 -3.6956-7.4989 0.1077 0.34860.0379 0.6594 R2=0.9054 F=82.9409 p=0.0000 0 1 2 3参数参数参数估计值参数估计值置信区间置信区间29.113313.7013 44.525211.13421.9778 20.2
9、906 -7.6080-12.6932 -2.5228 0.67120.2538 1.0887 -1.4777-2.8518 -0.1037 R2=0.9209 F=72.7771 p=0.0000 3 0 1 2 4x1和和x2对对y的影响有的影响有交互作用交互作用两模型销售量预测两模型销售量预测比较比较21422322110 xxxxxy22322110 xxxy2933. 8 y(百万支百万支)区间区间 7.8230,8.7636区间区间 7.8953,8.7592 3272. 8 y(百万支百万支)控制价格差控制价格差x1=0.2元,投入广告费元,投入广告费x2=6.5百万元百万元预测
10、区间长度更短预测区间长度更短 略有增加略有增加 y x2=6.5x1=0.2 -0.200.20.40.67.588.59x1y -0.200.20.40.67.588.59x1y 56787.588.599.510 x2y 567888.599.51010.5x2y 22322110 xxxy21422322110 xxxxxy两模型两模型 与与x1, ,x2关系的关系的比较比较y 交互作用影响的讨论交互作用影响的讨论2221 . 06712. 07558. 72267.301xxyx价格差价格差 x1=0.1 价格差价格差 x1=0.32223 . 06712. 00513. 84535.
11、321xxyx21422322110 xxxxxy5357. 72x加大广告投入使销售量增加加大广告投入使销售量增加 ( x2大于大于6百万元)百万元)价格差较小时增加价格差较小时增加的速率更大的速率更大 56787.588.599.51010.5x1=0.1x1=0.3x2y 1 . 03 . 011xxyy价格优势会使销售量增加价格优势会使销售量增加 价格差较小时更需要靠广告价格差较小时更需要靠广告来吸引顾客的眼球来吸引顾客的眼球 完全二次多项式模型完全二次多项式模型 22521421322110 xxxxxxyMATLAB中有命令中有命令rstool直接求解直接求解00.20.47.58
12、8.599.5105.566.57x1x2y ),(543210从输出从输出 Export 可得可得10.2 软件开发人员的薪金软件开发人员的薪金资历资历 从事专业工作的年数;管理从事专业工作的年数;管理 1= =管理人员,管理人员,0= =非管理人非管理人员;教育员;教育 1= =中学,中学,2= =大学,大学,3= =更高程度更高程度建立模型研究薪金与资历、管理责任、教育程度的关系建立模型研究薪金与资历、管理责任、教育程度的关系分析人事策略的合理性,作为新聘用人员薪金的参考分析人事策略的合理性,作为新聘用人员薪金的参考 编编号号薪金薪金资资历历管管理理教教育育011387611102116
13、0810303187011130411283102编编号号薪金薪金资资历历管管理理教教育育422783716124318838160244174831601451920717024619346200146名软件开发人员的档案资料名软件开发人员的档案资料 分析与假设分析与假设 y 薪金薪金,x1 资历(年)资历(年)x2 = = 1 管理人员,管理人员,x2 = = 0 非管理人员非管理人员1= =中学中学2= =大学大学3= =更高更高其它中学,x013其它大学,x014资历每加一年薪金的增长是常数;资历每加一年薪金的增长是常数;管理、教育、资历之间无交互作用管理、教育、资历之间无交互作用 教
14、教育育443322110 xaxaxaxaay线性回归模型线性回归模型 a0, a1, , a4是待估计的回归系数,是待估计的回归系数, 是随机误差是随机误差 中学:中学:x3=1, x4=0 ;大大学:学:x3=0, x4=1; 更高:更高:x3=0, x4=0 模型求解模型求解443322110 xaxaxaxaay参数参数参数估计值参数估计值置信区间置信区间a011032 10258 11807 a1546 484 608 a26883 6248 7517 a3-2994 -3826 -2162 a4148 -636 931 R2=0.957 F=226 p=0.000R2,F, p 模
15、型整体上可用模型整体上可用资历增加资历增加1年薪年薪金增长金增长546 管理人员薪金多管理人员薪金多6883 中学程度薪金比更中学程度薪金比更高的少高的少2994 大学程度薪金比更大学程度薪金比更高的多高的多148 a4置信区间包含零点,置信区间包含零点,解释不可靠解释不可靠! !中学:中学:x3=1, x4=0;大大学:学:x3=0, x4=1; 更高:更高:x3=0, x4=0. x2 = = 1 管理,管理,x2 = = 0 非管理非管理x1资历资历( (年年) )残差分析方法残差分析方法 结果分析结果分析443322110 xaxaxaxaay残差残差yyee 与资历与资历x1的关系的
16、关系 05101520-2000-1000010002000e与管理与管理教育组合的关系教育组合的关系 123456-2000-1000010002000残差全为正,或全为负,管理残差全为正,或全为负,管理教教育组合处理不当育组合处理不当 残差大概分成残差大概分成3个水平,个水平, 6种管理种管理教育组合混在教育组合混在一起,未正确反映一起,未正确反映 。应在模型中增加管理应在模型中增加管理x2与教育与教育x3, x4的交互项的交互项 组合组合123456管理管理010101教育教育112233管理与教育的组合管理与教育的组合426325443322110 xxaxxaxaxaxaxaay进一
17、步的模型进一步的模型增加管理增加管理x2与教育与教育x3, x4的交互项的交互项参数参数参数估计值参数估计值置信区间置信区间a01120411044 11363a1497486 508a270486841 7255a3-1727-1939 -1514a4-348-545 152a5-3071-3372 -2769a618361571 2101R2=0.999 F=554 p=0.000R2, ,F有改进,所有回归系数置信有改进,所有回归系数置信区间都不含零点,模型完全可用区间都不含零点,模型完全可用 消除了不正常现象消除了不正常现象 异常数据异常数据( (33号号) )应去掉应去掉 05101
18、520-1000-5000500e x1 123456-1000-5000500e 组合组合去掉异常数据后去掉异常数据后的结果的结果参数参数参数估计值参数估计值置信区间置信区间a01120011139 11261a1498494 503a270416962 7120a3-1737-1818 -1656a4-356-431 281a5-3056-3171 2942a619971894 2100R2= 0.9998 F=36701 p=0.000005101520-200-1000100200e x1 123456-200-1000100200e 组合组合R2: 0.957 0.999 0.999
19、8F: 226 554 36701 置信区间长度更短置信区间长度更短残差残差图十分正常图十分正常最终模型的结果可以应最终模型的结果可以应用用模型应用模型应用 制订制订6种管理种管理教育组合人员的教育组合人员的“基础基础”薪金薪金( (资历为资历为0)组合组合管理管理教育教育系数系数“基础基础”薪金薪金101a0+a39463211a0+a2+a3+a513448302a0+a410844412a0+a2+a4+a619882503a011200613a0+a218241426325443322110 xxaxxaxaxaxaxaay中学:中学:x3=1, x4=0 ;大;大学:学:x3=0,
20、x4=1; 更高:更高:x3=0, x4=0 x1= = 0; x2 = = 1 管理,管理,x2 = = 0 非管理非管理大学程度管理人员比大学程度管理人员比更高更高程度管理人员的薪金高程度管理人员的薪金高 大学程度非管理人员比大学程度非管理人员比更高更高程度非管理人员的薪金略低程度非管理人员的薪金略低 对定性因素对定性因素( (如管理、教育如管理、教育) ),可以,可以引入引入0- -1变量变量处理,处理,0- -1变量的个数应比定性因素的水平少变量的个数应比定性因素的水平少1 软件开发人员的薪金软件开发人员的薪金残差分析方法残差分析方法可以发现模型的缺陷,可以发现模型的缺陷,引入交互作用
21、项引入交互作用项常常能够改善模型常常能够改善模型 剔除异常数据剔除异常数据,有助于得到更好的结果,有助于得到更好的结果注:可以直接对注:可以直接对6种管理种管理教育组合引入教育组合引入5个个0- -1变量变量 10.3 酶促反应酶促反应 问问题题研究酶促反应(研究酶促反应(酶催化反应)酶催化反应)中嘌呤霉素对反中嘌呤霉素对反应速度与底物应速度与底物(反应物)(反应物)浓度之间关系的影响浓度之间关系的影响 建立数学模型,反映该酶促反应的速度与底建立数学模型,反映该酶促反应的速度与底物浓度以及经嘌呤霉素处理与否之间的关系物浓度以及经嘌呤霉素处理与否之间的关系 设计了两个实验设计了两个实验 :酶经过
22、嘌呤霉素处理;酶未:酶经过嘌呤霉素处理;酶未经嘌呤霉素处理。实验数据见下表经嘌呤霉素处理。实验数据见下表: 方方案案底物浓度底物浓度(ppm)0.020.060.110.220.561.10反应反应速度速度处理处理764797107123139159152191201207200未处理未处理6751848698115131124144158160/线性化模型线性化模型 经嘌呤霉素处理后实验数据的估计结果经嘌呤霉素处理后实验数据的估计结果 参数参数参数估计值(参数估计值(10-3)置信区间(置信区间(10-3) 15.1073.539 6.676 20.2470.176 0.319R2=0.85
23、57 F=59.2975 p=0.00008027.195/11104841. 0/122xxy21xy111121对对 1 , 2非线性非线性 对对 1, 2线性线性 x121线性化模型结果分析线性化模型结果分析 x较大时,较大时,y有较大偏差有较大偏差 1/x较小时有很好的较小时有很好的线性趋势,线性趋势,1/x较大较大时出现很大的起落时出现很大的起落 参数估计时,参数估计时,x较小较小(1/x很大)的数据控很大)的数据控制了回归参数的确定制了回归参数的确定 0102030405000.0050.010.0150.020.0251/y1/xxy112100.511.505010015020
24、0250 xxy21xybeta,R,J = nlinfit (x,y,model,beta0) beta的置信区间的置信区间MATLAB 统计工具箱统计工具箱 输入输入 x自变量自变量数据矩阵数据矩阵y 因变量数据向量因变量数据向量beta 参数的估计值参数的估计值R 残差,残差,J 估计预估计预测误差的测误差的Jacobi矩阵矩阵 model 模型的函数模型的函数M文件名文件名beta0 给定的参数初值给定的参数初值 输出输出 betaci =nlparci(beta,R,J) 非线性模型参数估计非线性模型参数估计function y=f1(beta, x)y=beta(1)*x./(be
25、ta(2)+x);xxy21x= ; y= ;beta0=195.8027 0.04841;beta,R,J=nlinfit(x,y,f1,beta0);betaci=nlparci(beta,R,J);beta, betaci beta0线性化线性化模型估计结果模型估计结果 非线性模型结果分析非线性模型结果分析参数参数参数估计值参数估计值置信区间置信区间 1212.6819197.2029 228.1609 20.06410.0457 0.0826 画面左下方的画面左下方的Export 输出其它统计结果。输出其它统计结果。拖动画面的十字线,得拖动画面的十字线,得y的预测值和预测区间的预测值和
26、预测区间剩余标准差剩余标准差s= 10.9337xxy21最终反应速度为最终反应速度为半速度点半速度点(达到最终速度一半达到最终速度一半时的时的x值值 )为为6831.21210641. 02其它输出其它输出命令命令nlintool 给出交互画面给出交互画面00.511.5050100150200250o 原始数据原始数据+ 拟合结果拟合结果 00.20.40.60.81-50050100150200250混合反应混合反应模型模型 x1为底物浓度,为底物浓度, x2为一示性变量为一示性变量 x2=1表示经过处理,表示经过处理,x2=0表示未经处理表示未经处理 1是未经处理的最终反应速度是未经处
27、理的最终反应速度 1是经处理后最终反应速度的增长值是经处理后最终反应速度的增长值 2是未经处理的反应的半速度点是未经处理的反应的半速度点 2是经处理后反应的半速度点的增长值是经处理后反应的半速度点的增长值 在同一模型中考虑嘌呤霉素处理的影响在同一模型中考虑嘌呤霉素处理的影响xxy2112221211)(xxxxy)(o 原始数据原始数据+ 拟合结果拟合结果 混合模型求解混合模型求解用用nlinfit 和和 nlintool命令命令,17001,6001,05. 00201. 002估计结果和预测估计结果和预测剩余标准差剩余标准差s= 10.4000 参数参数参数估计值参数估计值置信区间置信区间
28、 1160.2802145.8466 174.7137 20.04770.0304 0.0650 152.403532.4130 72.3941 20.0164-0.0075 0.0403 2置信区间包含零点,置信区间包含零点,表明表明 2对因变量对因变量y的影响不显著的影响不显著12221211)(xxxxy)(参数初值参数初值(基于对数据的分析基于对数据的分析)经嘌呤霉素处理的作用不影响半速度点参数经嘌呤霉素处理的作用不影响半速度点参数未经未经处理处理经处理经处理o 原始数据原始数据+ 拟合结果拟合结果 未经未经处理处理经处理经处理简化的混合模型简化的混合模型 简化的混合模型简化的混合模型
29、形式简单,形式简单,参数置信区间参数置信区间不含零点不含零点剩余标准差剩余标准差 s = 10.5851,比一般混合模型略大,比一般混合模型略大 12221211)(xxxxy)(121211xxxy)(估计结果和预测估计结果和预测参参数数参数估参数估计值计值置信区间置信区间 1166.6025154.4886 178.7164 20.05800.0456 0.0703 142.0252 28.9419 55.1085一般混合模型与简化混合模型预测比较一般混合模型与简化混合模型预测比较实际实际值值一般模型预测一般模型预测值值(一般一般模型模型)简化模型预测简化模型预测值值(简化简化模型模型)6
30、747.34439.207842.73585.44465147.34439.207842.73585.44468489.28569.571084.73567.0478191190.83299.1484189.05748.8438201190.83299.1484189.05748.8438207200.968811.0447198.183710.1812200200.968811.0447198.183710.1812简化混合模型的预测区间较短,更为实用、有效简化混合模型的预测区间较短,更为实用、有效12221211)(xxxxy)(121211xxxy)(预测区间为预测区间为预测值预测值 注
31、:非线性模型拟合程度的评价无法直接利用注:非线性模型拟合程度的评价无法直接利用线性模型的方法,但线性模型的方法,但R2 与与s仍然有效。仍然有效。酶促反应酶促反应 反应速度与底物浓度的关系反应速度与底物浓度的关系非线性非线性关系关系求解求解线性模型线性模型 求解非线性模型求解非线性模型机理分析机理分析嘌呤霉素处理对反应速度与底物浓度关系的影响嘌呤霉素处理对反应速度与底物浓度关系的影响混合混合模型模型 发现问题,发现问题,得参数初值得参数初值引入引入0-1变量变量简化简化模型模型 检查检查参数置信区参数置信区间间是否包含零点是否包含零点10.4 投资额与国民生产总值和物价指数投资额与国民生产总值
32、和物价指数 问问题题建立投资额模型,研究建立投资额模型,研究某地区某地区实际投资额与国民实际投资额与国民生产总值生产总值 ( GNP ) 及物价指数及物价指数 ( PI ) 的关系的关系2.06883073.0424.5201.00001185.9195.0101.95142954.7474.9190.96011077.6166.491.78422631.7401.9180.9145 992.7144.281.63422417.8423.0170.8679 944.0149.371.50422163.9386.6160.8254 873.4133.361.40051918.3324.1150.
33、7906 799.0122.851.32341718.0257.9140.7676 756.0125.741.25791549.2206.1130.7436 691.1113.531.15081434.2228.7120.7277 637.797.421.05751326.4 229.8110.7167 596.7 90.91物价物价指数指数国民生国民生产总值产总值投资额投资额年份年份序号序号物价物价指数指数国民生产国民生产总值总值投资额投资额年份年份序号序号根据对未来根据对未来GNP及及PI的估计,预测未来投资额的估计,预测未来投资额 该地区该地区连续连续20年的统计数据年的统计数据 时间序
34、列中同一变量的顺序观测值之间存在时间序列中同一变量的顺序观测值之间存在自相关自相关以时间为序的数据,称为以时间为序的数据,称为时间序列时间序列 分分析析许多经济数据在时间上有一定的许多经济数据在时间上有一定的滞后滞后性性 需要诊断并消除数据的自相关性,建立新的模型需要诊断并消除数据的自相关性,建立新的模型若采用普通回归模型直接处理,将会出现不良后果若采用普通回归模型直接处理,将会出现不良后果 投资额与国民生产总值和物价指数投资额与国民生产总值和物价指数 1.32341718.0257.9140.7676 756.0125.741.25791549.2206.1130.7436 691.1113
35、.531.15081434.2228.7120.7277 637.797.421.05751326.4 229.8110.7167 596.7 90.91物价物价指数指数国民生国民生产总值产总值投资额投资额年份年份序号序号物价物价指数指数国民生产国民生产总值总值投资额投资额年份年份序号序号基本回归模型基本回归模型投资额与投资额与 GNP及物价指数间均有很强的线性关系及物价指数间均有很强的线性关系ttttxxy22110t 年份,年份, yt 投资额,投资额,x1t GNP, x2t 物价指数物价指数 0, 1, 2 回归系数回归系数 x1tytx2tyt t 对对t相互相互独立的零均值正态随机
36、变量独立的零均值正态随机变量基本回归模型的结果与分析基本回归模型的结果与分析 tttxxy21479.8596185. 0725.322MATLAB 统计工具箱统计工具箱 参数参数参数估计值参数估计值置信区间置信区间 0322.7250224.3386 421.1114 10.61850.4773 0.7596 2-859.4790-1121.4757 -597.4823 R2= 0.9908 F= 919.8529 p=0.0000剩余标准差剩余标准差 s=12.7164 没有考虑时间序列数据的没有考虑时间序列数据的滞后性影响滞后性影响R20.9908,拟合度高,拟合度高模型优点模型优点模型
37、缺点模型缺点可能忽视了随机误差存在可能忽视了随机误差存在自相关自相关;如果;如果存在自相关性,用此模型会有不良后果存在自相关性,用此模型会有不良后果自相关性的定性诊断自相关性的定性诊断 残差诊断法残差诊断法tttyye模型残差模型残差作残差作残差 etet-1 散点图散点图大部分点落在第大部分点落在第1, 3象限象限 t 存在正的自相关存在正的自相关 大部分点落在第大部分点落在第2, 4象限象限 自相关性直观判断自相关性直观判断在在MATLAB工作区中输出工作区中输出et为随机误差为随机误差 t 的估计值的估计值 -30-20-1001020-30-20-1001020et-1et t 存在负
38、的自相关存在负的自相关 基本回归基本回归模型的随机误模型的随机误差项差项 t 存在正的自相关存在正的自相关 自回归自回归性性的的定量诊断定量诊断自回归模型自回归模型tttttttuxxy122110,自相关系数自相关系数 1| 0, 1, 2 回归系数回归系数 = 0无无自相关性自相关性 0 0如何估计如何估计 如何消除自相关如何消除自相关性性D-W统计量统计量D-W检验检验 ut 对对t相互相互独立的零均值正态随机变量独立的零均值正态随机变量存在负存在负自相关性自相关性存在正存在正自相关性自相关性广义差分法广义差分法 D-W统计量与统计量与D-W检验检验 nttnttteeeDW22221)
39、(检验水平检验水平, ,样本容量,样本容量,回归变量数目回归变量数目D-W分布分布表表nttnttteee222112)(12n较大较大nttnttteee2221/4011DWDW4-dU44-dLdUdL20正正自自相相关关负负自自相相关关不不能能确确定定不不能能确确定定无无自自相相关关20DW01DW41DW检验检验临界值临界值dL和和dU由由DW值的大小确定值的大小确定自相关性自相关性广义差分变换广义差分变换 )1 (0*0以以 *0, 1 , 2 为为回归系数的普通回归模型回归系数的普通回归模型原模型原模型 DW值值 D-W检验检验无自相关无自相关 有自相关有自相关 广义广义差分差分
40、继续此继续此过程过程原模型原模型 新模型新模型 新模型新模型 ttttuxxy*22*11*0*步骤步骤 原模型原模型tttttttuxxy122110,1*tttyyy2, 1,1,*ixxxtiitit变换变换)(12DW21DW不能确定不能确定增加数据量;增加数据量;选用其它方法选用其它方法 投资额新模型的建立投资额新模型的建立 DWold dL 作变换作变换 原模型原模型残差残差et样本容量样本容量n=20,回归,回归变量数目变量数目k=3, =0.05 查表查表临界值临界值dL=1.10, dU=1.54DWold=0.8754原模型有原模型有正自相关正自相关1*5623. 0ttt
41、yyy2 , 1,5623. 01,*ixxxtiititnttnttteeeDW22221)(5623. 02/1DWDW4-dU44-dLdUdL20正正自自相相关关负负自自相相关关不不能能确确定定不不能能确确定定无无自自相相关关参数参数参数估计值参数估计值置信区间置信区间 *0163.49051265.4592 2005.2178 10.69900.5751 0.8247 2-1009.0333-1235.9392 -782.1274R2= 0.9772 F=342.8988 p=0.0000ttttuxxy*22*11*0*21*0*2*1*,,估计系数由数据tttxxy总体效果良好总
42、体效果良好 剩余标准差剩余标准差 snew= 9.8277 sold=12.7164投资额新模型的建立投资额新模型的建立 1*5623. 0tttyyy2 , 1,5623. 01,*ixxxtiitit新模型的自相关性检验新模型的自相关性检验dU DWnew 4-dU 新模型新模型残差残差et样本容量样本容量n=19,回归,回归变量数目变量数目k=3, =0.05 查表查表临界值临界值dL=1.08, dU=1.53DWnew=1.5751新模型无自相关性新模型无自相关性DW4-dU44-dLdUdL20正正自自相相关关负负自自相相关关不不能能确确定定不不能能确确定定无无自自相相关关1,2,
43、21, 1, 113794.5670333.10093930. 0699. 05623. 04905.163ttttttxxxxyy*2*1*033.1009699.04905.163tttxxy新模型新模型还原为还原为原始变量原始变量一阶自回归模型一阶自回归模型一阶自回归一阶自回归模型残差模型残差et比比基本回归基本回归模型要小模型要小05101520-30-20-1001020新模型新模型 et *,原模型原模型 et +残差图比较残差图比较051015200100200300400500新模型新模型 t *,新模型新模型 t +拟合图比较拟合图比较模型结果比较模型结果比较tttxxy21
44、479.8596185. 0725.322基本回归模型基本回归模型一阶自回归模型一阶自回归模型1, 2, 21, 1, 113794.5670333.10093930. 0699. 05623. 04905.163ttttttxxxxyy投资额预测投资额预测对未来投资额对未来投资额yt 作预测,需先作预测,需先估计出未来的国民估计出未来的国民生产总值生产总值x1t 和物价指数和物价指数 x2t设已知设已知 t=21时,时, x1t =3312,x2t=2.19387638.469 ty一阶自回归模型一阶自回归模型2.06883073.0424.5201.95142954.7474.9191.78422631.7401.9180.7436 691.1113.530.7277 637.7 97.420.7167 596.7 90.91物价物价指数指数国民生国民生产总值产总值投资额投资额年份年份序号序号物价物价指数指数国民生产国民生产总值总值投资额投资额年份年份序号序号一阶自回归模型一阶自回归模型7638.469 ty基本回归模型基本回归模型6720.485 tyt 较小是由于较小是由于yt-1=424.5过小所致过小所致