(人教版)高中数学选修2-2课件:第1章 导数及其应用1.2.1、2(1) .ppt

上传人(卖家):金钥匙文档 文档编号:414680 上传时间:2020-03-31 格式:PPT 页数:33 大小:1.25MB
下载 相关 举报
(人教版)高中数学选修2-2课件:第1章 导数及其应用1.2.1、2(1) .ppt_第1页
第1页 / 共33页
(人教版)高中数学选修2-2课件:第1章 导数及其应用1.2.1、2(1) .ppt_第2页
第2页 / 共33页
(人教版)高中数学选修2-2课件:第1章 导数及其应用1.2.1、2(1) .ppt_第3页
第3页 / 共33页
(人教版)高中数学选修2-2课件:第1章 导数及其应用1.2.1、2(1) .ppt_第4页
第4页 / 共33页
(人教版)高中数学选修2-2课件:第1章 导数及其应用1.2.1、2(1) .ppt_第5页
第5页 / 共33页
点击查看更多>>
资源描述

1、1.2 导数的计算 1.2.1 几个常用函数的导数 1.2.2 基本初等函数的导数公式 及导数的运算法则(一),自主学习 新知突破,1掌握几个常用函数的导数,并能进行简单的应用 2掌握基本初等函数的导数公式,并能进行简单的应用,问题1 函数yf(x)x的导数是什么?,问题2 函数yx的导数y1的意义是什么? 提示2 y1表示函数yx图象上每一点处的切线的斜率都为1,如图若yx表示路程关于时间的函数,则y1可以解释为某物体作瞬时速度为1的匀速运动,几个常用函数的导数,0 1 2x,基本初等函数的导数公式,0 x1 cos x sin x axln a(a0) ex,2对基本初等函数的导数公式的理

2、解 不要求根据导数定义推导这八个基本初等函数的导数公式,只要求能够利用它们求简单函数的导数,在学习中,适量的练习对于熟悉公式是必要的,但应避免形式化的运算练习,解析: 因常数的导数等于0,故选C. 答案: C,2曲线yx3上切线平行或重合于x轴的切点坐标( ) A(0,0) B(0,1) C(1,0) D以上都不是 解析: (x3)3x2,若切线平行或重合于x轴则切线斜率k0,即3x20得x0, y0,即切点为(0,0)故选A. 答案: A,3函数f(x)sin x,则f(6)_. 解析: f(x)cos x,所以f(6)1. 答案: 1,4求下列函数的导数: (1)yx8;(2)y1;(3)

3、ylog2x; (4)y2e3;(5)y2cos x.,合作探究 课堂互动,求函数的导数,求下列函数的导数: 思路点拨 解答本题可先将解析式化为基本初等函数,再利用公式求导,(1)y3x4.(2)y3xln 3.,求简单函数的导函数有两种基本方法: (1)用导数的定义求导,但运算比较繁杂; (2)用导数公式求导,可以简化运算过程、降低运算难度解题时根据所给问题的特征,将题中函数的结构进行调整,再选择合适的求导公式,答案: B,求某一点处的导数,思路点拨 先求导函数,再由导数值求P点横坐标,1.在某点处的导数与导函数是不同的,在某点处的导数是指在该点处的导数值 2求函数在某点处的导数需要先对原函

4、数进行化简,然后求导,最后将变量的值代入导函数便可求解,导数几何意义的应用,已知曲线方程yx2,求过点B(3,5)且与曲线相切的直线方程 思路点拨 解决切线问题的关键是求切点的坐标,要注意区分是曲线在某点处的切线还是过某点的切线,1.求过点P的切线方程时应注意,P点在曲线上还是在曲线外,两种情况的解法是不同的 2解决此类问题应充分利用切点满足的三个关系: 一是切点坐标满足曲线方程;二是切点坐标满足对应切线的方程;三是切线的斜率是曲线在此切点处的导数值,3已知点P(1,1),点Q(2,4)是曲线yx2上的两点,求与直线PQ垂直的曲线yx2的切线方程,求下列函数的导数 (1)y(x)8; (2)y(ax)5(a为不等于0的常数) 【错解】 (1)y8(x)78x7. (2)y5(ax)45a4x4. 【错因】 两小题的解法都是错用了公式(xn)nxn1,本公式成立的条件是底数是自变量x本身,而不是关于自变量x的代数式,因此本题直接套用幂函数的求导公式是错误的,【正解】 (1)y(x)8x8, y(x8)8x7. (2)y(ax)5a5x5, y(a5x5)a5(x5)5a5x4.,高效测评 知能提升,谢谢观看!,

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 高中 > 语文 > 人教版 >
版权提示 | 免责声明

1,本文((人教版)高中数学选修2-2课件:第1章 导数及其应用1.2.1、2(1) .ppt)为本站会员(金钥匙文档)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!


侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|