1、一、可分离变量方程一、可分离变量方程第七章微第七章微 分分 方方 程程第二节一阶微分方程第二节一阶微分方程二、一阶线性微分方程二、一阶线性微分方程一阶微分方程的一般形式为一阶微分方程的一般形式为F(x,y,y)=0.一、可分离变量方程一、可分离变量方程例如:形如例如:形如y =f(x)g(y)的微分方程,称为的微分方程,称为可分离变量方程可分离变量方程.(1)分离变量分离变量将方程整理为将方程整理为xxfyygd)(d)(1 使方程各边都只含有一个变量使方程各边都只含有一个变量.的形式,的形式,(2)两边积分两边积分两边同时积分,得两边同时积分,得,d)(1yyg 左边左边.d)(xxf 右边
2、右边故方程通解为故方程通解为.d)(d)(1Cxxfyyg 我们约定在微分方程这一章中不定积分式表示我们约定在微分方程这一章中不定积分式表示被积函数的一个原函数,被积函数的一个原函数,而把积分所带来的任意常而把积分所带来的任意常数明确地写上数明确地写上.例例 1 求方程求方程.1)cos(sin2的通解的通解yxxy 解解分离变量,得分离变量,得,d)cos(sin1d2xxxyy 两边积分,得两边积分,得,)sin(cosarcsinCxxy 这就是所求方程的通解这就是所求方程的通解例例 2 求方程求方程.的通解的通解xyy 解解分离变量,得分离变量,得,d1dxxyy 两边积分,得两边积分
3、,得,1e|1xyC ,1ln|ln1Cxy 化简得化简得.0,1,e2221 CxCyCC则则令令,1e1xyC 另外,另外,y=0 也是方程的解,也是方程的解,因此因此 C2 为任意常数为任意常数xCy2 所所以以.xCy 求解过程可简化为:求解过程可简化为:,ddxxyy 两边积分得两边积分得,ln1lnlnCxy 即通解为即通解为,lnlnxCy ,xCy 其中其中 C 为任意常数为任意常数.中的中的 C2 可以为可以为 0,这样,方程的通解是这样,方程的通解是分离变量得分离变量得例例 3 求方程求方程 dx+xydy=y2dx+ydy 满足初始满足初始条件条件 y(0)=2 的特解的
4、特解.解解将方程整理为将方程整理为.d)1(d)1(2xyyxy 分离变量,得分离变量,得,1dd12 xxyyy两边积分,有两边积分,有.ln21)1ln()1ln(212Cxy 化简,得化简,得,)1(122 xCy即即1)1(22 xCy将初始条件将初始条件 y(0)=2 代入,代入,.1)1(322 xy为所求之通解为所求之通解.得得 C=3.故所求特解为故所求特解为例例 4.)(dd )均均是是正正的的常常数数与与其其中中(的的通通解解求求方方程程akaykyxy 解解分离变量得分离变量得,d)(dxkayyy 即即.dd)11(xkayyay 两边积分,得两边积分,得.lnlnCk
5、axyay 经整理,得方程的通解为经整理,得方程的通解为,e1kaxCay 也可写为也可写为.e1kaxCay .2sin2sin 的的通通解解求求方方程程yxyxy 例例 5解解.2sin2cos2cos2sin2sin2cos2cos2sinyxyxyxyxy 积分后,得通解积分后,得通解,ln2sin2)2cot2ln(cscCxyy 分离变量分离变量,得得,d2cos2sin2dxxyy 即即.e2cot2csc2sin2xCyy 二、一阶线性微分方程二、一阶线性微分方程一阶微分方程的下列形式一阶微分方程的下列形式)()(xQyxPy 称为一阶线性微分方程,简称称为一阶线性微分方程,简
6、称一阶线性方程一阶线性方程.其中其中P(x)、Q(x)都是自变量的已知连续函数都是自变量的已知连续函数.左边的每项中仅含左边的每项中仅含 y 或或 y,且均为且均为 y 或或 y 的一次项的一次项.它的特点它的特点是:右边是已知函数,是:右边是已知函数,称为一阶线性齐次微分方程,简称称为一阶线性齐次微分方程,简称线性齐次方程线性齐次方程,0,则称方程,则称方程 为一阶线性非齐次微分为一阶线性非齐次微分方程,简称方程,简称线性非齐次方程线性非齐次方程.通常方程通常方程 称为方程称为方程 所对应的线性齐次方程所对应的线性齐次方程.,0)(yxPy若若 Q(x)若若 Q(x)0,则方程成为,则方程成
7、为1.一阶线性齐次方程的解法一阶线性齐次方程的解法一阶线性齐次方程一阶线性齐次方程0)(yxPy是可分离变量方程是可分离变量方程.,d)(dxxPyy 两边积分,得两边积分,得,lnd)(lnCxxPy 所以,方程的通解公式为所以,方程的通解公式为.ed)(xxPCy分离变量,得分离变量,得例例 6 求方程求方程 y +(sin x)y=0 的通解的通解.解解所给方程是一阶线性齐次方程,且所给方程是一阶线性齐次方程,且 P(x)=sin x,,cosdsind)(xxxxxP由通解公式即可得到方程的通解为由通解公式即可得到方程的通解为.ecosxCy 则则例例 7求方程求方程 (y-2xy)d
8、x+x2dy=0 满足初始满足初始条件条件 y|x=1=e 的特解的特解.解解将所给方程化为如下形式:将所给方程化为如下形式:,021dd2 yxxxy这是一个线性齐次方程,这是一个线性齐次方程,,21)(2xxxP 且且则则 ,1lnd12d)(22xxxxxxxP由通解公式得该方程的通解由通解公式得该方程的通解,e12xCxy 将初始条件将初始条件 y(1)=e 代入通解,代入通解,.e12xxy 得得 C=1.故所求特解为故所求特解为2.一阶线性非齐次方程的解法一阶线性非齐次方程的解法设设 y=C(x)y1 是非齐次方程的解,是非齐次方程的解,将将 y=C(x)y1(其中其中 y1 是齐
9、次方程是齐次方程 y +P(x)y=0 的解的解)及其导数及其导数 y =C (x)y1+C(x)y 1 代入方程代入方程).()(xQyxPy 则有则有),()()()()(111xQyxCxPyxCyxC 即即),()()()(111xQyxPyxCyxC 因因 y1 是对应的线性齐次方程的解,是对应的线性齐次方程的解,因此有因此有,0)(11 yxPy故故),()(1xQyxC 其中其中 y1 与与 Q(x)均为已知函数,均为已知函数,,d)()(1CxyxQxC 代入代入 y=C(x)y1 中,得中,得.d)(111xyxQyCyy 容易验证,上式给出的函数满足线性非齐次方程容易验证,
10、上式给出的函数满足线性非齐次方程),()(xQyxPy 所以可以通过积分所以可以通过积分求得求得且含有一个任意常数,所以它是一阶线性非齐次方程且含有一个任意常数,所以它是一阶线性非齐次方程)()(xQyxPy 的通解的通解在运算过程中,我们取线性齐次方程的一个解为在运算过程中,我们取线性齐次方程的一个解为,ed)(1 xxPy于是,一阶线性非齐次方程的通解公式,就可写成:于是,一阶线性非齐次方程的通解公式,就可写成:.de)(ed)(d)(xxQCyxxPxxP上述讨论中所用的方法,是将常数上述讨论中所用的方法,是将常数 C 变为待定变为待定函数函数 C(x),再通过确定再通过确定 C(x)而
11、求得方程解的方法,而求得方程解的方法,称为称为常数变易法常数变易法.例例 8 求方程求方程 2y -y=ex 的通解的通解.解解法一法一 使用常数变易法求解使用常数变易法求解将所给的方程改写成下列形式:将所给的方程改写成下列形式:,e2121xyy 这是一个线性非齐次方程,它所对应的线性齐次方这是一个线性非齐次方程,它所对应的线性齐次方程的通解为程的通解为,e2xCy 将将 y 及及 y 代入该方程,得代入该方程,得设所给线性非齐次方程的解为设所给线性非齐次方程的解为,e)(2xxCy ,e21e)(2xxxC 于是,有于是,有,ede21)(22CxxCxx 因此,原方程的通解为因此,原方程
12、的通解为.eee)(22xxxCxCy 解法解法二二 运用通解公式求解运用通解公式求解将所给的方程改写成下列形式:将所给的方程改写成下列形式:,e2121xyy ,e21)(,21)(xxQxP 则则则则 ,2d21d)(xxxxP ,edee21de)(22d)(xxxxxPxxxQ代入通解公式,得原方程的通解为代入通解公式,得原方程的通解为.eee)e(222xxxxCCy ,ee2d)(xxxP 例例 9 求解初值问题求解初值问题 .1)(,cosyxyyx解解使用常数变易法求解使用常数变易法求解将所给的方程改写成下列形式:将所给的方程改写成下列形式:,cos11xxyxy 则与其对应的
13、线性齐次方程则与其对应的线性齐次方程01 yxy的通解为的通解为.xCy 设所给线性非齐次方程的通解为设所给线性非齐次方程的通解为.1)(xxCy 于是,有于是,有 .sindcos)(CxxxxC将将 y 及及 y 代入该方程,得代入该方程,得,cos11)(xxxxC 因此,原方程的通解为因此,原方程的通解为.sin11)(sinxxxCxCxy 将初始条件将初始条件 y()=1 代入,得代入,得 C=,).sin(1xxy 所 以,所 以,所求的特解,即初值问题的解为所求的特解,即初值问题的解为例例 10求方程求方程 y2dx+(x-2xy-y2)dy=0 的通解的通解.解解将原方程改写为将原方程改写为,121dd2 xyyyx这是一个关于未知函数这是一个关于未知函数 x=x(y)的一阶线性非齐次的一阶线性非齐次方程,方程,,21)(2yyyP 其中其中它的自由项它的自由项 Q(y)=1.代入一阶线性非齐次方程的通解公式,有代入一阶线性非齐次方程的通解公式,有 yCxyyyyyydeed21d2122),e1()e(e12112yyyCyCy 即所求通解为即所求通解为).e1(12yCyx