1、学习目标学习目标1、知识与技能、知识与技能借助单位圆理解任意角的三角函数借助单位圆理解任意角的三角函数;从任意角三角从任意角三角函数的定义认识其定义域,函数值的符号函数的定义认识其定义域,函数值的符号;已知角已知角终边上一点终边上一点,会求角会求角的各三角函数值。的各三角函数值。2、过程与方法、过程与方法利用终边与单位圆的交点坐标求三角函数值利用终边与单位圆的交点坐标求三角函数值 ;各各个三角函数值的象限符号。个三角函数值的象限符号。3、情感、态度与价值观、情感、态度与价值观学习转化的思想,培养学生严谨治学、一丝不苟的学习转化的思想,培养学生严谨治学、一丝不苟的科学精神科学精神.教学的重点和难
2、点教学的重点和难点 重点:重点:任意角三角函数的定义,利用定义求任意角的三角函数值。难点:难点:任意角的三角函数不同的定义方法,会利用定义求任意角的三角函数值。1.在初中我们是如何定义锐角三角函数的?在初中我们是如何定义锐角三角函数的?sincostancacbba复习回顾复习回顾OabMPc22:barOPbMPaOM其中yx2.在直角坐标系中如何用坐标表示锐角三角函数?在直角坐标系中如何用坐标表示锐角三角函数?raOPOMcosrbOPMPsinabOMMPtanbaP,Mo如果改变点在终边上的位置,这三个比值会改变吗?如果改变点在终边上的位置,这三个比值会改变吗?PMOPMPsinOPO
3、McosOMMPtanOMPPMOPOPMPOOMMOPM诱思诱思 探究探究MOyxP(a,b)OPMPsinOPOMcosOMMPtan,则若1 rOPbaab1.锐角三角函数(在单位圆中)锐角三角函数(在单位圆中)以原点以原点O为为圆心,以单位圆心,以单位长度为半径的圆,称为长度为半径的圆,称为单位圆单位圆.yOP),(bax1M2.任意角的三角函数定义任意角的三角函数定义 设设 是一个任意角,它的终边与单位圆交于点是一个任意角,它的终边与单位圆交于点),(yxP 那么那么:(1)叫做叫做 的正弦,记作的正弦,记作 ,即,即 ;ysinysin (2)叫做叫做 的余弦,记作的余弦,记作 ,
4、即,即 ;cosxxcos(3)叫做 的正切正切,记作 ,即 。xytanxytan 所以,正弦,余弦,正切都所以,正弦,余弦,正切都是以是以角为自变量角为自变量,以,以单位圆单位圆上点上点的的坐标或坐标的比值坐标或坐标的比值为函数值的为函数值的函数,我们将他们称为函数,我们将他们称为三角函数三角函数.0,1AOyxyxP,)0(x)0,1(AxyoP),(yx的终边的终边说说 明明(1)正弦就是交点的纵坐标,余弦就是交点)正弦就是交点的纵坐标,余弦就是交点横坐标的比值横坐标的比值.的横坐标,的横坐标,正切就是正切就是 交点的纵坐标与交点的纵坐标与(2)由于角的集合与实数集之间可以建立)由于角
5、的集合与实数集之间可以建立一一对应关系一一对应关系,三角函数可以看成是以实数为三角函数可以看成是以实数为自变量自变量的函数的函数.例例1.求求 的正弦、余弦和正切值的正弦、余弦和正切值.3535AOB解:解:在直角坐标系中,作在直角坐标系中,作 AOB,易知,易知 的终边与单位圆的交点坐标为的终边与单位圆的交点坐标为 13(,).22所以所以 53sin,32 51cos,325tan3.3 思考:思考:若把角若把角 改为改为 呢呢?3567,2167sin,2367cos3367tan实例实例 剖析剖析xyoAB35P15.1根据上述方法否能求得特殊角三角函数值根据上述方法否能求得特殊角三角
6、函数值?角(角度)090180270360角(弧度)0/23/22sin 010-10cos 10-101tan 0不存在0不存在0 设角设角 是一个任意角,是一个任意角,是终边上的任意一点,是终边上的任意一点,点点 与原点的距离与原点的距离 .),(yxP022yxrP那么那么 叫做叫做 的正弦,即的正弦,即ryrysin 叫做叫做 的余弦,即的余弦,即rxrxcos 叫做叫做 的正弦,即的正弦,即xy0tanxxy定义推广:定义推广:135122222yxr1312cosrx125tanxy5sin,13yr于是于是,巩固巩固 提高提高练习练习:1.已知角已知角 的终边过点的终边过点 ,求
7、求 的三个三角函数值的三个三角函数值.5,12P解:解:由已知可得:由已知可得:P15.21.根据三角函数的定义,确定它们的定义域根据三角函数的定义,确定它们的定义域(弧度制)(弧度制)探探究究三角函数三角函数定义域定义域sincostanR)(2Zkk2.确定三角函数值在各象限的符号确定三角函数值在各象限的符号yxosinyxocosyxotan+()()()()()()()()()()()R+-+-+-+-1.内容总结:内容总结:三角函数的概念三角函数的概念.三角函数的定义域及三角函数值在各象限的符号三角函数的定义域及三角函数值在各象限的符号.运用了定义法、公式法、数形结合法解题运用了定义法、公式法、数形结合法解题.化归的思想,数形结合的思想化归的思想,数形结合的思想.归纳归纳 总结总结2.方法总结:方法总结:3.体现的数学思想:体现的数学思想: