1、九年级数学总复习课时安排建议一 、 第一阶段复习内容与课时安排课时序号复习内容课时数过关测试内容时间数与代数1、数与式第1课时实数11、实数1课时第2课时二次根式1第3课时代数式、整式运算12、整式与分式 1课时第4课时因式分解、分式12、方程与不等式第5课时一次方程、分式方程一次方程组13、方程与方程组1课时第6课时一元二次方程1第7课时一元一次不等式(组)14、不等式与不等式组1课时第8课时不等式的应用13、函数及其图象第9课时函数概念、一次函数15、函数概念与一次函数1课时第10课时反比例函数16、反比例函数1课时第11课时二次函数17、二次函数1课时第12课时函数的应用1空间与图形1图
2、形的认识第13课时平行线、三角形与证明18、三角形与证明1课时第14课时特殊三角形1第15课时多边形、平行四边形与证明19、四边形与证明1课时第16课时特殊平行四边形、梯形与证明1第17课时圆(1)110、圆1课时第18课时圆(2)1第19课时作(画)图111、作(画)图1课时第20课时视图112、视图与投影1课时第21课时投影12、图形与变换第22课时图形的变换113、图形的变换1课时第23课时相似形(1)114、图形的相似形1课时第24课时相似形(2)1第25课时解直角三角形115、直角三角形的边角关系1课时第26课时解直角三角形的应用13、图形与坐标第27课时图形变换与坐标116、图形与
3、坐标1课时概率与统计1、统计第28课时统计117、统计1课时2、概率 第29课时概率118、概率1课时二 、 第二阶段复习(约18课时)以知识的横向关系为线索实现知识的第二覆盖,建议专题为:1、选择填空 2、归纳猜想 3、探索开放 4、图表信息5、阅读理解 6、操作设计 7、实践应用 8、几何与代数综合三、第三阶段复习:模拟测试(约12课时)实现知识的第三覆盖。第1课 实数初中 复习教学目标:1、理解现实世界中具有相反意义的量的含义,会借助数轴理解实数的相反数和绝对值的意义,会求实数的相反数和绝对值,并会比较实数的大小。2、了解平方根、算术平方根、立方根的概念,会用根号表示数的平方根和立方根。
4、3、了解无理数与实数的概念,知道实数与数轴上的点的一一对应的关系,会用一个有理数估计一个无理数的大致范围,了解近似数与有效数字的概念,会用计算器进行近似计算。4、结合具体问题渗透化归思想,分类讨论的数学思想方法。复习教学过程设计: 唤醒一、填空:1、-1.5的相反数是 、倒数是 、绝对值是 、1的绝对值是 。2、倒数等于本身的数是 ,绝对值等于本身的数是 。算术平方根等于本身的数是 ,立方根等于本身的数是 。3、2-1= ,-2-2= ,(-)-2= ,(3.14- )0= 4、在 ,-,sin600,tan450中,无理数共有 个。5、用科学记数法表示:-3700000= ,0.000312
5、= 用科学记数法表示的数3.4105 中有 个有效数字,它精确到 位。6、点A在数轴上表示实数2,在数轴上到A点的距离是3的点表示的数是 。7、精确到0.1 的近似值为 ,误差小于1的近似值为 。8、比较下列各位数的大小:- -,0 -1, tan300 sin600二、判断:1、不带根号的数都是有理数。( ) 2、无理数都是无限小数。( )3、是分数,也是有理数。( )4、3-2没有平方根。( )5、若=x ,则x的值是0和1。( )6、a2的算术平方根是a。( )三、选择:1、和数轴上的点一一对应的数是( )A、整数 B、有理数 C、无理数 D、实数2、已知:xy 0,且|x|=3 ,|y
6、|=1,则x+y的值等于( )A、2或2 B、4或4 C、4或2 D、4或4或2或23、如果一个数的平方根与立方根相同,这个数为( )A、0 B、1 C、0或1 D、0或+1或-1尝试例1,已知下列各数:,-2.6, ,0,0.4,-(-3),(-)-2,cos300,-10,0.21221222122221(按此规律,从左至右,在每相邻的两个1之间,每段在原有2的基础上再增加一个2)。把以上各数分别填入相应的集合。无理数集合:( ) 有理数集合:( )整数结集合:( ) 分数集合:( ) 正数集合:( )(解略)提炼:实数的分类思想方法。例2,计算下列各题:1、 20-(-)2+2-2- 2
7、、(-+-)(-72) 3、()-2-230.125-+|-1|2、 解略(答案:1:5;2:-11;3:2例3,已知实数a、b在数轴上的位置如图所示:ba(1)你会比较实数a、b的大小吗? (2)你会比较|a|与|b|的大小吗?相信你能!(3)在什么条件下0? 0? =0?并说明此时坐标原点的大致位置。解:(1)ab,这是因为在数轴上表示的两个数,右边的总比左边的大。分析:解决问题的关键是数轴的原点的位置,你想按怎样的顺序去变化呢?(可自左向右,也可自右向左)(2)当原点在点a的左边时,|a|b| 当原点在点a,b的中点偏左时,|a|b| 当原点在点a,b的中点时,|a|b| 当原点在点a,
8、b的中点偏右时,|a|b| 当原点在点b的右边时,|a|b|(3)当a,b同号时(且a0,b0),0 此时坐标原点在a的左侧或b的右侧 当a,b 异号时(且a0,b0)0 此时坐标原点在a,b两点之间 当a0,b=0时,=0,此时坐标原点在b点提炼:运用绝对值的意义,解决数形结合问题中的动点问题,渗透化归和分类讨论的数学思想方法,训练学生逆向思维。小结 整数 有理数 1、实数的分类 分数 无理数 什么叫无理数 相反数: 2、实数a的 绝对值: 倒数: (当 时)3、实数的运算和科学记数法4、运用绝对值的意义,解决数形结合问题中的动点问题,渗透化归和分类讨论的数学思想方法,注意逆向思维的运用。实
9、践1、 考试命题纲要习题第2课 二次根式初中 复习教学目标:1、 知道平方根,算术平方根,立方根的含义,能说出二次根式的两条运算法则。2、 会用根号表示并会求数的平方根,算术平方根,立方根,会进行简单的二次根式的四则运算,会对简单的二次根式进行化简,能估算一个无理数的大致范围并能比较大小。3、 在解题过程中体会数形结合思想,由特殊到一般的数学思想,并能用它们解决问题。复习教学过程设计【唤醒】一、填空: 定义:平方根,算术平方根,立方根 =(a0,b0) 化简知识结构(阅读): 运算法则 =(a0,b0) 四则运算14的平方根是 , 的算术平方根是 , 立方根是 2化简:= , = , ( )2
10、= , = 3比较大小: 3.85, -2 -3, 4估算:= (误差小于0. 1), = (误差小于1)5根式分母有理化的结果是 二、判断:1的平方根是 ( ) 2.任何数都有算术平方根 ( )3任何数都有立方根 ( ) 4. = =2 ( )5. =2 = ( ) 6. 5+2=7 ( )三、选择题:1下列说法中正确的是 ( )A、1没有算术平方根 B、1的平方根是1C、0的平方根是0 D、-1的平方根是-12下列各式中正确的是 ( ) A 、=+ 5 B、 =-3 C、 += +6 D、 =-103下列语句正确的个数为 ( )(1)+4是64的立方根,(2)= x,(3)的立方根是4,(
11、4) = +4A、 1个 B、 2 个 C、 3 个 D、4 个4化简(x1)正确的是 ( )A、 x-1 B、(x-1) 2 C、 1-x D、 无法确定【尝试】 :例1、 计算:(1) -+- (2) - (3- ) (3) (3- 2) (5+4) (1)2解 (略) (答案:- , -, 16- 40 )提炼:(1)对于带根号的无理数的运算,可运用公式 =(a0,b0), =(a0,b0)且这两个公式可以顺向和逆向两个方面运用。(2)适当运用乘法公式可使运算简化。(3)计算结果必须简化。例2 、 是否存在这样的数,它的平方为35?如果不存在,请说明理由,如果存在,请写出来并用作图的方法
12、在数轴上找出表示这个数的实数点。分析:首先求出符合条件的数+,再在数轴上作一个直角三角形,找到表示+ 的线段即可解 (略)提炼:(1)在数轴上作这样的点时,常常通过作直角三角形来解决。(2)本题有两解,防止漏解现象,解题时,应仔细审题,全面考虑,注意数形结合的思想。例3、(1)判断下列各式是否成立,你认为成立的请在括号内打“”,不成立的打“” =2 ( ) =3 ( ) =4 ( ) =5 ( )(2)判断完以上各题后,你发现了什么规律?请用含有 n的式子将规律表示出来,并注明n的取值范围。(3)请用数学知识说明你所写式子的正确性。分析:先按运算公式计算化简后,再判断找规律。解:(1)均正确。
13、(2) = n ( n为大于1的自然数)(3) = = = n提炼:本题是一道探索题,由特殊进行观察,归纳,建立猜想,用符号表示并给出证明,体现了数学中常用的由特殊到一般的思想方法。【小结】: 1、知识结构见上表2、基本数学方法:数形结合思想,特殊到一般思想,分类思想等3、解题注意点:(1)解题时应弄清基本概念,法则 (2) 注意解题的严密性,充分考虑各种情况,防止漏解现象。2、 【实践】: 1、考试命题纲要习题第3课 代数式 整式运算初中 复习教学目标:1 了解字母表示数的意义,了解单项式、多项式、整式以及单项式的系数与次数、多项式的项与次数、同类项的概念,并能说出单项式的系数和次数、多项式
14、的项和次数。知道正整数幂的运算性质,能说出去括号、添括号法则,了解两个乘法公式的几何背景。2 会用代数式表示简单问题中的数量关系,会求代数式的值,会把一个多项式按某个字母升(降)幂排列,会判断同类项,并能熟练地合并同类项,会准确地进行去括号与添括号,会推导乘法公式,能运用整式的运算性质、公式以及混合运算顺序进行简单的整式的加、减、乘、除运算。3 通过运用幂的运算性质、整式的运算法则和公式进一步发展观察、归纳、类比、概括等能力,会运用类比思想,一般到特殊、再由特殊到一般的数学思想和数形结合思想解决问题。复习教学过程设计:.【唤醒】现实世界、其他学科、数学中的问题情境知识结构(阅读): 解决问题整
15、式及其运算一、填空:1_ _ 和 _ _ 统称为整式。2 , , 3整式的混合运算顺序:先_、后_、再_、有括号先_.二、判断:1。 ( ) 2。( )3。( ) 4. ( )5。 ( )三、选择:1某商场实行7.5折优惠销售,现售价为y元的商品的原价为 ( )A. y 元 B. y元 C . 元 D. 元2 ( )A. 4和3 B. 2和3 C . 4 和2 D. 无法确定3下列各式计算过程正确的是 ( )A. B. C. D. 4下列各式中,不能用平方差公式计算的是 ( )A. B. C. D. 5. ( )A. 4 B. 8 C. 4 或-4 D. 8或-8. 【尝试】例1先化简,再求值
16、:。 (答案:11)例2计算:分析:按整式混合运算的顺序:先乘方,同级运算从左往右依次进行。(答案:36b)提炼:在熟练掌握整式的运算法则和幂的运算性质基础上必须严格按照混合运算顺序逐步运算。例3计算:(1); (2)分析:第(1)题根据混合运算法则先合理使用乘法公式,后进行整式的加减运算。第(2)题先将原式转化为的形式,后运用平方差公式将其化为的形式,最后利用完全平方公式计算即可。(答案见复习指导用书第11页)提炼:根据乘法公式的特点将原题中的代数式变形为符合公式特点的形式是解此类题的关键。例4 见复习指导用书第6页例2分析:解决本题时学生往往着眼于分析表格中的数据的变化,应指导学生结合具体
17、的图形观察图形的形成规律,着重在摆成的平行四边形的两组对边与菱形和等腰梯形的边长之间的关系。提炼:本例是一道探索题,首先给出了几个特殊的图形,然后根据这些特殊的图形的周长,进行探索、归纳、猜想,得到一般图形的周长,体现了数学中常见的由一般到特殊、再由一般到特殊的思想方法以及数形结合思想。. 【小结】1 本单元的知识结构(见填空)。2 本节课运用的数学思想方法:类比思想,一般到特殊、再由特殊到一般的思想方法和数形结合思想等。. 【实践】1.考试命题纲要习题第4课时 因式分解 分式初中 复习教学目标1、 知道因式分解、分式的概念;能说出分式的基本性质。2、 会灵活应用四种方法进行因式分解;会利用分
18、式基本性质进行约分和通分;会进行简单的分式加、减、乘、除运算。3、会逆用乘法公式、乘法法则验证因式分解;会用类比的方法得出分式的性质和运算法则;会用作差法比较两个代数式值的大小。复习教学过程设计一、【唤醒】1、填空题因式分解因式分解的概念分组分解法十字相乘法因式分解的方法(因式分解方法的选择:一提、二用、三叉、四分组)分式分式的运算分式的概念分式的基本性质(1)(2)因式分解中的公式有 , , (3)分式的乘(除)法法则是 , 分式的加(减)法法则是 , 二、【尝试】 例1有这样的一道题:“计算:的值,其中x=2006。”甲同学把“”错抄成“”,但他的计算结果也是正确的。你说这是怎么回事?解
19、原式=0 因为化简结果不含x,所以无论他抄什么值,结果都是正确的。提炼:如果把x的值抄错,而不影响计算结果,这一类题的化简结果一定是一个常数,与x的取值无关;如果把x的值抄成它的相反数,而不影响计算结果,这一类题的化简结果一定是一个常数或者是关于x偶次幂的代数式,与x的符号无关。例2 化简(1) (2)() 解 (1)原式= (2)原式=提炼:(1) 解题时要注意分式的运算顺序,先乘除,再加减,有括号优先,其次能分解的多项式要分解因式,便于约分,结果一定要是最简分式。(2)对于分配律仍适用,但不能用分配律。例3 已知:,求整式A、B。分析:由于要求A、B,等式的左边是已知,右边是未知,可以从未
20、知化到已知。故把等式作恒等变形,得到等式左右两边分母相同,所以分子也相同,转化为关于A、B的一个二元一次方程组,再求解。解 A=1 B=2提炼:本例是分式运算的逆向运用,两个代数式恒等,首先是化结构相同,其次是利用相同项的系数也相同求未知量。例4 甲、乙两人进行百米赛跑,甲前半程的速度为m米/秒,后半程的速度为n米/秒;乙前半时的速度为m米/秒,后半时的速度为n米/秒。问:谁先到达终点?分析:本题首先要用m、n的代数式表示甲、乙两人到达终点的时间t1、t2,比较t1、t2的大小,可以转化为t1-t2与0比较解 见复习指导用书第16页提炼:(1)比较两个代数式A、B的值的大小,通常可用作差的方法
21、,当A-B0,则AB;当A-B=0,则A=B;当A-B0,则AB。(2)由于本例中没有指明m、n的大小,所以要分m=n与mn两种情况讨论。三、【小结】 1、 带领学生回顾尝试中的填空题。2、 这节课复习因式分解的应用,化简分式。在化简分式时,注意的运算顺序和符号,防止出错。其次比较两个代数式值的大小可以用作差法。四、 【实践】 1.考试命题纲要习题第5课时 一次方程 分式方程 一次方程组初中 复习教学目标1、了解一次方程、分式方程、二元一次方程组的概念。知道方程组的解的含义。理解分式方程产生增根的原因。理解二元一次方程与一次函数的关系。说出解整式方程和分式方程的异同,2、会解一元一次方程、简单
22、的二元一次方程组、可化为一元一次方程的分式方程。3、运用化归思想,引导学生分析出解二元一次方程组的本质是消元。运用方程或方程组解决实际问题 复习教学过程设计一、【唤醒】1、 填空:方程(组)的应用分式方程整式方程一元二次方程一元一次方程解题步骤二元一次方程组解法图像法方程解题方法:是2、判断:(1)1是一元一次方程 ( ) (2) ( )(3是方程=3的解方程=3的解是 (4)方程组的解是一次函数与的图象的交点坐标 3、选择:(1)关于的方程是一元一次方程,则为 A、 B、 C、 D、(2)二元一次方程组的解是 A、 B、 C、 D、 (3)已知是方程的一个根,则的值是 A、 8 B、8 C、
23、0 D、2(4)已知方程组的解是,则的值为 A、3 B、0 C、 D、1 二、【尝试】: 例1:解方程: (1) (2) 解: 略 答案:(1) (2)是增根,原方程无解提炼:解分式方程与整式方程的方法相似,容易出现错误的地方一是去分母时漏乘整式项及分子是多项式忘记添括号,二是忘记检验求得的整式方程的解是不是分式方程的根;例2: 解方程组(1) (2)提炼:解二元一次方程组应先观察方程中相同未知数的系数的特征,如果一个未知数的系数绝对值为1,一般选用代入法,若相同未知数系数绝对值相等,一般用加减法。例3: 在一次慈善捐款活动中,某同学对甲、乙两班捐款情况进行统计,得到如下三条信息:信息一:甲班
24、共捐款300元,乙班共捐款232元;信息二:乙班平均每人捐款钱数是甲班平均每人捐款钱数的倍;信息三:甲班比乙班多2人.请你根据以上三条信息,求出甲班平均每人捐款多少元?解 略 答案 5元提炼:列方程解应用题的步骤是一“审”二“设”三“列”四“解”五“答”。在审题过程中,要找出等量关系,设元的方法有两种(直接设元法和间接设元法),列是根据等量关系列出相应的方程(组),在解方程时,还要考虑方程的解是否要检验、是否符合实际意义,最后写上答案例4:(1)、阅读下列表格,求出表中关于的方程的解。 方 程方程的解(2)、通过阅读上述表格,你能解关于的方程 吗?分析:仔细阅读表格,比较以后不难发现方程的相似
25、之处。方程左右两边形式完全相同,只是把其中的未知数换成了某个常数,那么这样的方程可直接得解,因此我们只要把换成这种形式即可。解: 或 经检验是原方程的解。提炼:观察、比较、归纳、猜测是解数学题的重要能力,仔细观察方程结构,将要解的方程化为材料中的方程的形式,体会类比思想。三、【小结】1、知识结构:见填空。2、基本数学思想:化归思想、类比思想、数形结合思想。四、【实践】1、考试命题纲要习题第6课时 一元二次方程初中 复习教学目标1、 知道一元二次方程及其相关概念;了解求方程近似解的方法;能说出列方程解应用题的步骤。2、 会灵活应用方程解法解简单的一元二次方程。3、 会利用一元二次方程知识解决有关
26、实际问题,能根据具体问题的实际意义检验结果的合理性及分类思想。通过复习方程解法,进一步体会转化思想。复习教学过程设计一元二次方程应用(注意验证解的合理性)近似解直接开方法精确解一、【唤醒】1、填空题2、判断题(1)关于的方程是一元二次方程,则 (2)把一元二次方程化成一般形式是 (3)方程的左边配成完全平方后所得方程为 3、选择题(1)方程根的情况是 A、有两个相等实根 B、有两个不等实根 C、没有实根 D、无法确定(2)若一元二次方程两个实数根x1、x2,则 的值是 A、 B、 C、 D、2(3)关于x的一元二次方程的一个根为,另一根为,则有 ( A、 B、 C、 D、(4)已知,则的值为
27、A、1 B、1或2 C、2 D、5二、【尝试】 例1 用适当方法解下列方程:(1) (2)(3) (4)分析: 结合方程特点,四道题的解法依次是直接开方法、分解因式法、公式法、配方法。解 略 答案见复习指导用书第26页提炼: 形如的方程,选择用直接开方法;形如的方程,左边可以因式分解,选择用因式分解法;形如的方程,如果一次项系数是偶数,可以选择用配方法;否则用公式法。例2 去年,我国政府为减轻农民负担,决定在5年内免去农业税.某乡镇去年人均上缴农业税25元,预计明年人均上缴农业税为16元,假设这两年降低的百分率相同.(1)求降低的百分率;(2)若小红家有4人,今年小红家减少多少农业税?(3)小
28、红所在的乡约有16000农民,问该乡农民今年减少多少农业税.分析:例题第(1)小题跨度3年,去年、今年、明年,用列表法分析,设降低的百分率是,去年是25元,用表示今年是,明年是,然后根据等量关系列出方程,解出的值;第(2)、(3)题已知的值,分别求代数式的值;解 略 答案(1)20% (2) 20元 (3)80000元提炼: 运用数学知识解决社会热点问题和实际生活中的问题,关键是理解题意,将实际问题转化为数学问题。其次本例中的百分率是一个小于1的正数。例3 有一根长为68cm的铝丝,把它剪成32cm和36cm的两段,用32cm的一段弯成一个矩形,36cm的一段弯成一个有一条边是10cm等腰三角
29、形。请问:能否使弯成的矩形与等腰三角形的面积相等?若不能,请说明原因;若能,请求出矩形的边长。解 略 解法参照复习指导用书第35页提炼:(1)例题是一道几何背景面积相等的应用题,包含的知识点有矩形、三角形的周长、面积,等腰三角形的三线合一、勾股定理以及方程的解法。(2)三角形一边长是5cm,这一边是腰还是底边不清楚,所以必须分类讨论。例4 阅读下列材料,并回答问题:解方程,这是一个一元四次方程,根据该方程特点,它的通常解法是:设,则原方程变为 ,解这个方程,得。当时,;当时,。所以原方程有四个根(1)在由原方程到方程的过程中,利用了 达到了 的目的。(2)利用上述方法解方程:分析:阅读材料,体
30、会换元法解高次方程的方法,设辅助未知量,把方程降次,再解一元二次方程。解 (1)换元法 降次 (2)设,则原方程变为,解这个方程,得。当时,即解得;当时,即,0 此方程无解。所以原方程有两个根提炼:阅读材料,理解解高次方程的一般思路:换元降次,化高次方程为低次方程,体会化归思想。三、【小结】 五、 带领学生回顾尝试中的填空题。六、 本课运用的数学方法有分类思想、化归思想。四、【实践】 1、考试命题纲要习题第7课 一元一次不等式(组) 复习教学目标:1、 能根据具体问题中的大小关系了解不等式的意义,能说出不等式的基本性质,知道不等式(组)的解及解集的含义。2、 会解简单的一元一次不等式,并能在数
31、轴上表示一元一次不等式的解集;会解一元一次不等式(组),并能在数轴上确定其解集。3、 能运用类比思想比较一元一次不等式和一元一次方程在解法上的异同点,初步体会数形结合思想,并能运用数形结合的方法解决与不等式(组)的解集相关的问题。复习教学过程设计:【唤醒】解集数轴表示一、填空: 不等式 不等式的基本性质 解不等式 解集数轴表示知识结构(阅读):实际背景 一元一次不等式 解法 解集数轴表示 一元一次不等式组 解法 1不等式基本性质: (1)_ (2)_ (3)_2不等式的解集在数轴上的表示方法:大于向_画,小于向_画,有等号画_,无等号画_.3. 解一元一次不等式的一般步骤:(1)_(2)_(3
32、)_(4)_(5)_.4由两个一元一次不等式组成的不等式组的解集一般有四种类型:(1)其解集为_ ,简记为“同大取_”. (2)其解集为_ ,简记为“同小取_”.(3)其解集为_, 简记为“大小小大取_”.(4)其解集为_, 简记为“大大小小_”.二、判断:1由得 ( ) 2. 由得 ( )3. 由得 ( ) 4. 得 ( )5. 是不等式的一个解 6. 满足不等式的整数解有7个. ( )三、选择:1已知,则下列变形中错误的是 A. B. C. D. 2. 不等式的解集是 A. B. C. D. 3. 不等式的非负整数解的个数为 A. 4个 B. 5个 C. 6个 D. 无数个4不等式的解集为
33、,则的取值范围为 A. B. C. D. . 【尝试】例2 解不等式,并把它的解集在数轴上表示出来。 解略。(答案:)例3 解不等式组,并求出其整数解。分析:解一元一次不等式组既不能用代入法也不能用加减法,而是分别求出不等式组中的每个不等式的解集,然后利用数轴找出它们解集的公共部分,即不等式组的解集,熟练以后也可以利用口诀“同大取大,同小取小,大小小大取中间,大大小小无解”简捷地确定不等式组的解集。最后结合数轴用列举法确定符合条件的特殊解。解略。(答案:,整数解为1)提炼:用数形结合的思想方法,根据不等式组的解集的概念结合数轴正确确定不等式组的解集及特殊解。例4 若不等式组的解集为,求m的取值范围。分析:首先将不等式组化为,再利用数轴或依据不等式“同大取大”的方法可知。提炼:利用不等式组的解集来确定字母的取值范围,往往需要逆用不等式组的解集,有时需借助数轴或讨论等手段来解决问题。例5 阅读第(1)题的解法,解答第(2)题。(1) 解不等式解: 当即时,所以。 当即时,所以。综上所述,原不等式的解集为或。(2) 根据以上解法和不等式的性质“若,则”解不等式。分析:阅读第(1)题理解其解题方法:根据绝对值的概念先化简绝