1、天津市2022年各区模拟数学22题解直角三角形汇总1如图,海中有一个灯塔A,渔船跟踪鱼群由西向东航行,在B处测得灯塔A在北偏东方向上,航行到达C处,这时测得灯塔A在北偏东的方向上这时,C处距离灯塔A有多远(结果取整数)?参考数据:,取1.412如图所示,小亮在大楼的观光电梯中的点测得大楼楼底点的俯角为60,此时他距地面的高度为21米,电梯再上升9米到达点,此时测得大楼楼顶点的仰角为45,求大楼的高度(结果保留根号)3如图,小岛和都在码头的正北方向上,它们之间距离为,一艘渔船自西向东匀速航行,行驶到位于码头的正西方向处时,测得,渔船速度为,经过,渔船行驶到了处,测得,求渔船在处时距离码头有多远?
2、(结果精确到)(参考数据:,)4如图,海中有一个小岛A,它周围8海里内有暗礁渔船跟踪鱼群由西向东航行,在B点测得小岛A在北偏东60方向上,航行10海里到达C点,这时测得小岛A在北偏东30方向上如果渔船不改变航线继续向东航行,有没有触礁的危险?5共抓长江大保护,建设水墨丹青新岳阳,推进市中心城区污水系统综合治理项目,需要从如图,两地向地新建,两条笔直的污水收集管道,现测得地在地北偏东方向上,在地北偏西方向上,的距离为,求新建管道的总长度(结果精确到,)6如图,某渔船在完成捕捞作业后准备返回港口,途经某海域处时,港口的工作人员监测到点在南偏东方向上,另一港口的工作人员监测到点在正西方向上已知港口在
3、港口的北偏西方向,且、两地相距120海里(1)求出此时点到港口的距离(计算结果保留根号);(2)若该渔船从处沿方向向港口驶去,当到达点时,测得港口在的南偏东的方向上,求此时渔船的航行距离(计算结果保留根号)7由我国完全自主设计、自主建造的首艘国产航母于2018年5月成功完成第一次海上试验任务如图,航母由西向东航行,到达处时,测得小岛位于它的北偏东方向,且与航母相距80海里,再航行一段时间后到达B处,测得小岛位于它的北偏东方向如果航母继续航行至小岛的正南方向的处,求还需航行的距离的长(参考数据:,)8如图,小山上有一座高的电视发射塔,为了测量小山的高度在山脚某处D测得山顶的仰角为,测得塔项的仰角
4、为,求小山的高(已知:)(结果精确到)9小明测量一古塔的高度首先,小明在古塔前方C处测得塔顶端A点的仰角为,然后,小明往古塔方向前进30米至E处,测得塔顶端A点的仰角为,已知,小明的眼睛距离地面的高度已知点B、E、C在一条直线上,测量示意图如图所示,请帮小明求出该古塔的高度(结果取整数)(参考数据:,)10如图,某校教学楼的后面有一建筑物,当光线与地面的夹角是时,教学楼在建筑物的墙上留下高2米的影子;而当光线与地面夹角是时,教学楼顶A在地面上的影子F与墙角C有13米的距离(B,F,C在一条直线上),求教学楼的高结果保留整数)参考数据:11国庆假期间,小华一家外出去某景点B地游玩,到达A地后,根
5、据导航提示,车辆应沿北偏东方向行驶8千米至C地,再沿北偏西方向行驶一段距离到达B地,小华发现B地恰好在A地的正北方向,求和的长(结果保留小数点后一位)参考数据:,)12如图,一艘海轮位于灯塔P的北偏东方向上的A处,它沿正南方向航行后,到达位于灯塔P的南偏东方向上的B处,求此时海轮距灯塔的距离(结果取整数)参考数据:,取1.41413为庆祝改革开放40周年,某市举办了灯光秀,某数学兴趣小组为测量平安金融中心的高度,他们在地面C处测得另一幢大厦的顶部E处的仰角登上大厦的项部E处后,测得平安中心的顶部A处的仰角为,(如图)已知C、D、B三点在同一直线上,且米,米(结果取整数)(1)求大厦的高度;(2
6、)求平安金融中心的高度参考数据:,14如图,某湖心岛上有一亭子,在亭子的正东方向上的湖边有一棵树,在这个湖心岛的湖边处测得亭子在北偏西方向上,测得树在北偏东方向上,又测得、之间的距离等于米,求、之间的距离(结果精确到米)(参考数据:,)15如图,两地之间有一座山,汽车原来从地到地需经地沿折线行驶,全长现开通隧道后,汽车直接沿直线行驶,已知,求隧道开通后,汽车从地到地的路程(结果精确到)参考数据:16如图,某教学楼AB的后面有一建筑物CD,当光线与地面的夹角是22时,教学楼在建筑物的墙上留下高2m的影子CE;而当光线与地面的夹角是45时,教学楼顶A在地面上的影子F与墙角C的距离为18m (B、F
7、、C在一条直线上).求教学楼AB的高度.(结果保留整数)(参考数据:sin220.37,cos220.93,tan220.40 .)17如图,某建筑物顶部有一旗杆,且点A,B,C在同一条直线上,小红在D处观测旗杆顶部A的仰角为,观测旗杆底部B的仰角为,已知点D到地面的距离为,求旗杆的高度和建筑物的高度(结果保留小数点后一位)参考数据:18和平女神塑像是天津意大利风情区马克波罗广场的标志性建筑如图,在一次数学综合性实践活动中,小明为测量雕像的高度,在点处放置1.6米高的测角仪,从点处测得雕像顶端的仰角为31,然后沿射线方向前进7米到达点处,又从点处测得雕像顶端的仰角为43,点,在同一平面内,求雕
8、像的高度(结果精确到0.1)参考数据:,19如图是放在水平地面上的一把椅子的侧面图,椅子高为,椅面宽为,椅脚高为,且,从点测得点,点的俯角分别为和已知椅面宽,求椅脚高的长(结果取整数)参考数据:,20新冠肺炎疫情期间,我国各地采取了多种方式进行预防其中,某地运用无人机规劝居民回家如图,无人机于空中A处测得某建筑顶部B处的仰角为,测得该建筑底部C处的俯角为若无人机的飞行高度为,求该建筑的高度(结果取整数),参考数据:,21图1是电脑液晶显示器的侧面图,显示屏AB可以绕O点旋转一定角度,研究表明:如图2,当眼睛E与显示屏顶端A在同一水平线上,且望向显示器屏幕形成一个俯角(即望向屏幕中心P的的视线E
9、P与水平线EA的夹角)时,对保护眼睛比较好,而且显示屏顶端A与底座C的连线AC与水平线CD垂直时,观看屏幕最舒适,此时测得,液晶显示屏的宽AB为(1)求眼睛E与显示屏顶端A的水平距离AE;(结果精确到)(2)求显示屏项端A与底座C的距离AC(结果精确到)(参考数据:)22如图,从空中点测得两建筑物,底部的俯角分别为和如果测得与之间的距离为,且点,在同一直线上(结果取整数)(I)求点距地面的高度的值;(II)求建筑物,间的距离参考:,)23如图,小莹在数学综合实践活动中,利用所学的数学知识对某小区居民楼的高度进行测量先测得居民楼与之间的距离为,后站在点处测得居民楼的顶端的仰角为,居民楼的顶端的仰
10、角为,已知居民楼的高度为,小莹的观测点距地面求居民楼的高度(精确到)(参考数据:,)24,两市相距,分别从,处测得国家级风景区中心处的方位角如图所示,已知风景区是以为圆心,为半径的圆形区域为了开发旅游,有关部门设计、修建连接,两市的高速公路,问高速公路是否穿过风景区,请说明理由25如图,为了加快5G网络信号覆盖,某地在附近小山的顶部架设信号发射塔为了知道信号发射塔的高度,在地面上的A处测得塔顶P处的仰角是,向发射塔方向前行到达地面上的B处,测得塔顶P处的仰角是,塔底Q处的仰角是,根据测得的数据,求信号发射塔的高度(结果取整数)参考数据:参考答案:1【详解】过点A作,垂足为D,则由题意可知, 设
11、,则,在中,即 在中,即所以点C处距离灯塔A约为2【详解】解:过D作DHBC于H,过E作EGBC于G由已知得,BDH45,CEG60,AE21米,DE9米在RtCEG中,CGAE21米,tanCEG,EG(米)DHEG米在RtBDH中,BDH45,BHDH米BCCGHGBHCGDEBH219(30)米答:大楼BC的高度是(30)米3【详解】解:依题可得,km,设km,则km,在中,km,km,在中,解得:即渔船在处时距离码头约14.2km.4【详解】解:过点作于点,由题意知:,在中,在中,渔船不改变航线继续航行,没有触礁危险5.【详解】如图,过点C作于点D由题意得:,设,则是等腰直角三角形在中
12、,即解得经检验,是所列分式方程的解,在中,即解得则答:新建管道的总长度约为6【详解】(1)如图所示:延长,过点作延长线与点,由题意可得:,海里,则海里,即(海里),即此时点到港口的距离为海里;(2)过点A作ANBC于点N,如图:由(1)得:CD=60海里,AC=40海里,AECD,AAE=ACD=30,BAA=45,BAE=75,ABA=15,2=15=ABA,即AB平分CBA,AE=AN,设AA=x,则AE=AA,AN=AE=AE=x,1=60-30=30,ANBC,AC=2AN=x,AC+AA=AC,x+x=40,解得:x=60-20,AA=(60-20)海里,答:此时渔船的航行距离为(6
13、0-20)海里7.【详解】解:由题知:,在中,(海里)在中,(海里)答:还需要航行的距离的长为20.4海里8.【详解】设m,m,m在中,在中,解得,答:小山的高约为80m9【详解】解:如图,过D作于M,根据题意,点F在上,在中,在中,答:古塔的高度约为 10【详解】解:过点E作,垂足为H,设,在中,由,得,在中,由,得,经检验,符合题意,答:教学楼的高约为12米11【详解】解:如图,由题意可知,千米,作CDAB于D,在中,千米,千米,在中,千米,千米,(千米)答:B、C两地的距离约为5.3千米,A、B两地的距离约为9.2千米12【详解】解:如图,过点P作,垂足为H根据题意, 在中,在中, ,答
14、:此时海轮距灯塔的距离约为13【详解】解:(1)在RtDCE中,CDE=90,ECD=32,CD=400米,DE=CDtanECD4000.62=248(米)故大厦DE的高度约为248米;(2)如图,作EFAB于F由题意,得EF=DB=200米,BF=DE=248米,AEF=60在RtAFE中,AFE=90,AF=EFtanAEF2001.73=346(米),AB=BF+AF=248+346=594(米)故平安金融中心AB的高度约为594米14【详解】试题分析:通过构建直角三角形来解答,过点C作AB的垂线交AB于D,CD是直角三角形ACD和CBD的公共直角边,要先求出CD的值然后再求AD,BD
15、的值,进而得出AB的长试题解析:过点作,垂足为点,由题意,得 ,,在Rt中,,,又,在Rt中,又(米)答:、之间的距离为米.15【详解】过点作,垂足为点,在中,在中,在中,在中,答:汽车从地到地的路程约16.【详解】过点E作EGAB于G ,则四边形BCEG是矩形,BC=EG,BG=CE=2m设教学楼AB的高为xm,AFB=45 FAB=45, BF=AB=xm, EG=BC=(x+18)m ,AG=(x-2)m在RtAEG中,AEG=22tanAEG=,tan22=解得:x15m.答:教学楼AB的高约为15m17.【详解】如图,根据题意,过点D作,垂足为F,则可得四边形为矩形在中,在中,于是,
16、答:旗杆的高度约为,建筑物的高度约为18【详解】解:如图,由题意得: 延长交于则四边形 四边形 四边形都是矩形,设 由,由即:联立得:经检验:是原方程组的解,且符合题意,所以雕像的高度约为19【详解】解:由,可得四边形是矩形,由题意可得,在Rt中,在Rt中,答:椅脚高约为20【详解】解:如图,过点A作,垂足为E由题意可知,在中,在中,答:该建筑的高度约为21【详解】解:(1)由已知得:,在中,(cm),答:眼睛E与显示屏顶端A的水平距离AE约为;(2)如图,过点B作于点F, 在中,(cm)答:显示屏顶端A与底座C的距离AC约为22【详解】(I)在中, ,解得 (II)在中, , ,解得,在中,解得,米答:点距地面的高度的值约为122米,之间的距离约为253米23【详解】解:过点作交于点,交于点则,则 在中,在中,答:居民楼的高度约为24【详解】解:不穿过风景区,理由如下:过点作于点,如图所示:根据题意得:,在中,在中,;,高速公路不穿过风景区25.【详解】解:根据题意,在中,在中,在中,答:信号发射塔的高度约为30