1、绝密启用前2021年普通高等学校招生全国统一考试文科数学注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑如需改动,用橡皮擦干净后,再选涂其他答案标号回答非选择题时,将答案写在答题卡上写在本试卷上无效3考试结束后,将本试卷和答题卡一并交回一、选择题:本题共12小题,每小题5分,共60分在每小题给出的四个选项中,只有一项是符合题目要求的1. 已知全集,集合,则( )A. B. C. D. 2. 设,则( )A. B. C. D. 3. 已知命题命题,则下列命题中为真命题的是( )A. B. C. D. 4. 函
2、数的最小正周期和最大值分别是( )A. 和B. 和2C. 和D. 和25. 若满足约束条件则的最小值为( )A. 18B. 10C. 6D. 46. ( )A. B. C. D. 7. 在区间随机取1个数,则取到的数小于的概率为( )A. B. C. D. 8. 下列函数中最小值为4的是( )A. B. C. D. 9. 设函数,则下列函数中为奇函数的是( )A. B. C. D. 10. 在正方体中,P为的中点,则直线与所成的角为( )A. B. C. D. 11. 设B是椭圆的上顶点,点P在C上,则的最大值为( )A. B. C. D. 212. 设,若为函数的极大值点,则( )A. B.
3、 C. D. 二、填空题:本题共4小题,每小题5分,共20分13. 已知向量,若,则_14. 双曲线的右焦点到直线的距离为_15. 记的内角A,B,C的对边分别为a,b,c,面积为,则_16. 以图为正视图,在图中选两个分别作为侧视图和俯视图,组成某三棱锥的三视图,则所选侧视图和俯视图的编号依次为_(写出符合要求的一组答案即可)三、解答题共70分解答应写出文字说明,证明过程或演算步骤,第1721题为必考题,每个试题考生都必须作答第22、23题为选考题,考生根据要求作答(一)必考题:共60分17. 某厂研制了一种生产高精产品的设备,为检验新设备生产产品的某项指标有无提高,用一台旧设备和一台新设备
4、各生产了10件产品,得到各件产品该项指标数据如下:旧设备9.810.310.010.29.99.810.010.110.29.7新设备10.110.410.110.010.110.310.610.510.410.5旧设备和新设备生产产品的该项指标的样本平均数分别记为和,样本方差分别记为和(1)求,;(2)判断新设备生产产品的该项指标的均值较旧设备是否有显著提高(如果,则认为新设备生产产品的该项指标的均值较旧设备有显著提高,否则不认为有显著提高)18. 如图,四棱锥的底面是矩形,底面,M为的中点,且(1)证明:平面平面;(2)若,求四棱锥的体积19. 设是首项为1的等比数列,数列满足已知,成等差
5、数列(1)求和的通项公式;(2)记和分别为和的前n项和证明:20. 已知抛物线的焦点F到准线的距离为2(1)求C的方程;(2)已知O为坐标原点,点P在C上,点Q满足,求直线斜率的最大值.21. 已知函数(1)讨论的单调性;(2)求曲线过坐标原点的切线与曲线的公共点的坐标(二)选考题:共10分请考生在第22、23题中任选一题作答如果多做则按所做的第一题计分选修4-4:坐标系与参数方程22. 在直角坐标系中,的圆心为,半径为1(1)写出的一个参数方程;(2)过点作的两条切线以坐标原点为极点,x轴正半轴为极轴建立极坐标系,求这两条切线的极坐标方程 选修45:不等式选讲23. 已知函数(1)当时,求不
6、等式解集;(2)若,求a的取值范围2021年普通高等学校招生全国统一考试文科数学 答案解析一、选择题: 1. A解析:由题意可得:,则.故选A.2. C解析:由题意可得:.故选C.3. A解析:由于,所以命题为真命题;由于,所以,所以命题为真命题;所以为真命题,、为假命题.故选A4. C解析:由题,所以的最小正周期为,最大值为.故选C5. C解析:由题意,作出可行域,如图阴影部分所示,由可得点,转换目标函数为,上下平移直线,数形结合可得当直线过点时,取最小值,此时.故选C.6. D解析:由题意,.故选D.7. B解析:设“区间随机取1个数” ,“取到的数小于”,所以故选:B8. C解析:对于A
7、,当且仅当时取等号,所以其最小值为,A不符合题意;对于B,因为,当且仅当时取等号,等号取不到,所以其最小值不为,B不符合题意;对于C,因为函数定义域为,而,当且仅当,即时取等号,所以其最小值为,C符合题意;对于D,函数定义域为,而且,如当,D不符合题意故选C9. B解析:由题意可得,对于A,不是奇函数;对于B,是奇函数;对于C,定义域不关于原点对称,不是奇函数;对于D,定义域不关于原点对称,不是奇函数.故选B10. D解析:如图,连接,因为,所以或其补角为直线与所成的角,因为平面,所以,又,所以平面,所以,设正方体棱长为2,则,所以.故选D11. A解析:设点,因为,所以,而,所以当时,的最大
8、值为故选A12. D解析:若,则为单调函数,无极值点,不符合题意,故.依题意,为函数的极大值点,当时,由,画出的图象如下图所示:由图可知,故.当时,由时,画出的图象如下图所示:由图可知,故.综上所述,成立.故选D二、填空题: 13. 答案:解析:由题意结合向量平行的充分必要条件可得:,解方程可得:.故答案为.14. 答案:解析:由已知,所以双曲线的右焦点为,所以右焦点到直线距离为.故答案为15. 答案:解析:由题意,所以,所以,解得(负值舍去).故答案为.16.解析:选择侧视图为,俯视图为,如图所示,长方体中,分别为棱的中点,则正视图,侧视图,俯视图对应的几何体为三棱锥.故答案为:.三、解答题
9、 (一)必考题: 17. 答案:(1);(2)新设备生产产品的该项指标的均值较旧设备没有显著提高.解析:(1),.(2)依题意,所以新设备生产产品的该项指标的均值较旧设备没有显著提高.18. 答案:(1)证明见解析;(2)解析:(1)因为底面,平面,所以,又,所以平面,而平面,所以平面平面(2)由(1)可知,平面,所以,从而,设,则,即,解得,所以因为底面,故四棱锥的体积为19. 答案:(1),;(2)证明见解析.解析:因为是首项为1的等比数列且,成等差数列,所以,所以,即,解得,所以,所以.(2)证明:由(1)可得,得 ,所以,所以,所以.20. 答案:(1);(2)最大值为.解析:(1)抛
10、物线的焦点,准线方程为,由题意,该抛物线焦点到准线的距离为,所以该抛物线的方程为;(2)设,则,所以,由在抛物线上可得,即,所以直线斜率,当时,;当时,当时,因为,此时,当且仅当,即时,等号成立;当时,;综上,直线的斜率的最大值为.21. 答案:(1)答案见解析;(2).解析: (1)由函数的解析式可得:,导函数的判别式,当时,在R上单调递增,当时,的解为:,当时,单调递增;当时,单调递减;当时,单调递增;综上可得:当时,在R上单调递增,当时,在上单调递增,在上单调递减,在上单调递增.(2)由题意可得:,则切线方程为:,切线过坐标原点,则:,整理可得:,即:,解得:,则,即曲线过坐标原点的切线与曲线的公共点的坐标为.(二)选考题: 选修4-4:坐标系与参数方程22. 答案:(1),(为参数);(2)或.解析:(1)由题意,的普通方程为,所以的参数方程为,(为参数)(2)由题意,切线的斜率一定存在,设切线方程为,即,由圆心到直线的距离等于1可得,解得,所以切线方程为或,将,代入化简得或 选修45:不等式选讲23. 答案:(1).(2).解析:(1)当时,表示数轴上的点到和的距离之和,则表示数轴上的点到和的距离之和不小于,故或,所以的解集为.(2)依题意,即恒成立,故,所以或,解得.所以的取值范围是.