考点23 等比数列及其前n项和 (2019年高考数学真题分类Word文件).docx

上传人(卖家):四川天地人教育 文档编号:553655 上传时间:2020-06-01 格式:DOCX 页数:2 大小:25.46KB
下载 相关 举报
考点23 等比数列及其前n项和 (2019年高考数学真题分类Word文件).docx_第1页
第1页 / 共2页
考点23 等比数列及其前n项和 (2019年高考数学真题分类Word文件).docx_第2页
第2页 / 共2页
亲,该文档总共2页,全部预览完了,如果喜欢就下载吧!
资源描述

1、 温馨提示:温馨提示: 此题库为此题库为 WordWord 版版, , 请按住请按住 Ctrl, Ctrl, 滑动鼠标滚轴滑动鼠标滚轴, , 调节合适的观调节合适的观 看比例看比例, , 关闭关闭 WordWord 文档返回原板块。文档返回原板块。 考点考点 23 23 等比数列及其前等比数列及其前 n n 项和项和 一、选择题 1.(2019全国卷理科T5同 2019全国卷文科T6)已知各项均为正数的等比数列an的前4项的和为 15,且a5=3a3+4a1, 则a3= ( ) A.16 B.8 C.4 D.2 【命题意图】本题考查等比数列通项公式的应用,意在考查考生数列基本量的运算求解能力.

2、 【解析】选 C.设该等比数列的首项为a1,公比为q, 由已知得,a1q4=3a1q2+4a1, 因为a10 且q0,则可解得q=2, 又因为a1(1+q+q2+q3)=15, 即可解得a1=1,则a3=a1q2=4. 二、填空题 2.(2019全国卷理科T14)记Sn为等比数列an的前n项和.若a1= , =a6,则S5= . 【命题意图】本题根据已知条件,列出关于等比数列公比q的方程,应用等比数列的求和公式,计算得到S5.题目的难度不大, 注重基础知识、基本计算能力的考查. 【解析】设等比数列的公比为q,由已知a1= , =a6,所以( ) = q 5,又q0,所以q=3,所以S5= -

3、- = - - = . 答案: 【易错警示】准确计算,是解答此类问题的基本要求.本题由于涉及幂的乘方运算、繁分式计算,部分考生易出现运算错误. 3.(2019全国卷文科T14)记Sn为等比数列an的前n项和.若a1=1,S3= ,则 S4= . 【命题意图】准确计算,是解答此类问题的基本要求.本题由于涉及幂的乘方运算、繁分式计算,部分考生易出现运算错误.题目 的难度不大,注重了基础知识、基本计算能力的考查. 【解题指南】本题根据已知条件,列出关于等比数列公比q的方程,应用等比数列的求和公式,计算得到S4. 【解析】设等比数列的公比为q,由已知 S3=a1+a1q+a1q2=1+q+q2= ,即

4、 q2+q+ =0, 解得q=- ,所以 S4= - - = -(- ) -(- ) = . 答案: 【光速解题】S4=S3+a4=S3+a1q3= +(- ) = . 4.(2019全国卷文科T14)记Sn为等差数列an的前n项和,若a3=5,a7=13,则S10= . 【解析】设公差为d,因为a3=5,a7=13,所以 解得 所以S10=10+ 2=100. 答案:100 三、解答题 5.(2019全国卷文科T18)已知an是各项均为正数的等比数列,a1=2,a3=2a2+16. (1)求an的通项公式. (2)设bn=log2an,求数列bn的前n项和. 【命题意图】考查等比数列的性质、

5、数列通项公式的求法以及数列的求和. 【解析】(1)设an的公比为q,由题设得 2q2=4q+16, 即q2-2q-8=0.解得q=-2(舍去)或q=4. 因此an的通项公式为an=24n-1=22n-1. (2)由(1)得bn=(2n-1)log22=2n-1,因此数列bn的前n项和为 1+3+ +2n-1=n2. 6.(2019北京高考文科T16)设an是等差数列,a1=-10,且a2+10,a3+8,a4+6 成等比数列. (1)求an的通项公式. (2)记an的前n项和为Sn,求Sn的最小值. 【命题意图】 本小题主要考查等差数列及其性质,等比中项,意在考查等差数列通项公式与基本运算能力

6、,培养学生的运算能力, 体现了逻辑推理、数学运算的数学素养,属容易题. 【解析】(1)设an的公差为d,则 a2+10=a1+d+10=d,a3+8=a1+2d+8=2d-2,a4+6=a1+3d+6=3d-4, 又因为a2+10,a3+8,a4+6 成等比数列, 所以d(3d-4)=(2d-2)2,即d=2, 所以an=a1+(n-1)d=2n-12,nN*. (2)Sn= =n(n-11), 二次函数y=x(x-11)的对称轴为x=5.5, 所以当n=5 或 6 时,Sn有最小值-30. 【方法技巧】求等差数列前n项和的最值方法 1.求前n项和Sn= n 2+( - )n=An 2+Bn,其结构是以n为自变量的二次函数,从而数列的最值问题可转化为二次函数的最值 问题. 2.利用通项公式,令an=0,解得n0,当n取最接近n0的整数时,前n项和有最值.

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 高中 > 数学 > 高考专区 > 真题分类汇编
版权提示 | 免责声明

1,本文(考点23 等比数列及其前n项和 (2019年高考数学真题分类Word文件).docx)为本站会员(四川天地人教育)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!


侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|