1、初中数学试卷金戈铁骑整理制作探索规律练习题一细心观察,巧妙发现!班级: 学号: 姓名: 1(2009年贵州黔东南州)某校生物教师李老师在生物实验室做试验时,将水稻种子分组进行发芽试验;第1组取3粒,第2组取5粒,第3组取7粒即每组所取种子数目比该组前一组增加2粒,按此规律,那么请你推测第n组应该有种子数( )粒。A、B、C、D、2(2009年重庆)观察下列图形,则第个图形中三角形的个数是( )第1个第2个第3个ABCD3(2009武汉)将一些半径相同的小圆按如图所示的规律摆放:第1个图形有6个小圆,第2个图形有10个小圆,第3个图形有16个小圆,第4个图形有24个小圆,依次规律,第6个图形有
2、个小圆第1个图形第2个图形第3个图形第4个图形4(2009重庆綦江)观察下列等式:;则第(是正整数)个等式为_.5(2009年牡丹江市)有一列数,那么第7个数是 6.(2009年娄底)王婧同学用火柴棒摆成如下的三个“中”字形图案,依此规律,第n个“中”字形图案需 根火柴棒.7(2009恩施市)观察数表11第3个图形111111111111111111361015155A11根据表中数的排列规律,则字母所表示的数是_8(2009年益阳市)图6是一组有规律的图案,第1个 图案由4个基础图形组成,第2个图案由7个基础图形组成,第(n是正整数)个图案中由 个基础图形组成图6(1)(2)(3)-9(20
3、09年广州市)如图7-,图7-,图7-,图7-,是用围棋棋子按照某种规律摆成的一行“广”字,按照这种规律,第5个“广”字中的棋子个数是_,第个“广”字中的棋子个数是_10(2009肇庆)观察下列各式:,根据观察计算: (n为正整数)11.(2009年济宁市)观察图中每一个大三角形中白色三角形的排列规律,则第5个大三角形中白色三角形有 个 12.(2009年广西梧州)下图是用火柴棍摆成的边长分别是1,2,3 根火柴棍时的正方形当边长为n根火柴棍时,设摆出的正方形所用的火柴棍的根数为,则 (用n的代数式表示)n=1n=2n=313(2009年咸宁市)如图所示的运算程序中,若开始输入的值为48,我们
4、发现第1次输出的结果为24,第2次输出的结果为12,第2009次输出的结果为_(第13题)输入+3输出为偶数为奇数14(2009年湖北荆州)将四张花纹面相同的扑克牌的花纹面都朝上,两张一叠放成两堆不变若每次可任选一堆的最上面的一张翻看(看后不放回),并全部看完,则共有 种不同的翻牌方式15(2009年山西省)下列图案是晋商大院窗格的一部分,其中“”代表窗纸上所贴的剪纸,则第个图中所贴剪纸“”的个数为 (1)(2)(3)16.(2009年广东省)用同样规格的黑白两种颜色的正方形瓷砖,按下图的方式铺地板,则第(3)个图形中有黑色瓷砖 _块,第个图形中需要黑色瓷砖_块(用含的代数式表示)(1)(2)
5、(3)17观察下表,回答问题:序号123图形第 个图形中“”的个数是“”的个数的5倍18(2009年绵阳市)将正整数依次按下表规律排成四列,则根据表中的排列规律,数2009应排的位置是第 行第 列第1列第2列第3列第4列第1行123第2行654第3行789第4行121110探索规律练习题二班级: 学号: 姓名: 1(2009年河北)古希腊著名的毕达哥拉斯学派把1、3、6、10 这样的数称为“三角形数”,而把1、4、9、16 这样的数称为“正方形数” 从图1中可以发现,任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和下列等式中,符合这一规律的是( )4=1+3 9=3+6 16=6
6、+10图1A13 = 3+10B25 = 9+16 C36 = 15+21 D49 = 18+312.(2009年广西钦州)一组按一定规律排列的式子:,(a0)则第n个式子是_ _(n为正整数)3.(2009成都)已知,记,则通过计算推测出的表达式_(用含n的代数式表示)4(2009年广西南宁)正整数按图2的规律排列请写出第20行,第21列的数字 第一行第二行第三行第四行第五行第一列第二列第三列第四列第五列12510174361118987121916151413202524232221图25(2009年宜宾)如图,菱形ABCD的对角线长分别为,以菱形ABCD各边的中点为顶点作矩形A1B1C1
7、D1,然后再以矩形A1B1C1D1的中点为顶点作菱形A2B2C2D2,如此下去,得到四边形A2009B2009C2009D2009的面积用含 的代数式表示为 6(2009年青海)观察下面的一列单项式:,根据你发现的规律,第7个单项式为 ;第个单项式为 .7(2009年台州市)将正整数1,2,3,从小到大按下面规律排列若第4行第2列的数为32,则 ;第行第列的数为 (用,表示) 第列第列第列第列第行1第行第行8.(2009丽水市)如图,图是一块边长为1,周长记为P1的正三角形纸板,沿图的底边剪去一块边长为的正三角形纸板后得到图,然后沿同一底边依次剪去一块更小的正三角形纸板(即其边长为前一块被剪掉正三角形纸板边长的)后,得图,记第n(n3) 块纸板的周长为Pn,则Pn-Pn-1= . 9(2009年四川省内江市)把一张纸片剪成4块,再从所得的纸片中任取若干块,每块又剪成4块,像这样依次地进行下去,到剪完某一次为止。那么2007,2008,2009,2010这四个数中_可能是剪出的纸片数。