1、浙教版九年级数学上册第三章圆单元测试卷(含答案)一 选择题 (每小题3分,共30分)1.下列命题中,假命题是( )A.两条弧的长度相等,它们是等弧 B.等弧所对的圆周角相等C.直径所对的圆周角是直角 D.一条弧所对的圆心角等于它所对圆周角的2倍.2若圆的一条弦把圆分成度数的比为1 :3的两段弧,则劣弧所对的圆周角等于( )A.45 B.90 C.135 D.270 3.已知正六边形的周长是,则该正六边形的半径是( ) A .6a B. 4a C. 2a D.4.如图1,圆与圆的位置关系是( )A.外离 B相切 C.相交 D.内含 图1 图25. 如图2,A,B,C,D,E的半径都是1,顺次连结
2、这些圆心得到五边形ABCDE,则图中的阴影部分面积之和为( )A. B. C.2 D.6.过O内一点N的最长弦为6,最短的弦长为4,那么ON的长为( )A . B.2 C. D.-7若正三角形、正方形、正六边形的周长相等,它们的面积分别是,则下列关系成立的是( ) A B.C D.8.平行四边形的四个顶点在同一个圆上,则该平行四边形一定是( )A.正方形 B菱形 C.矩形 D.等腰梯形9.在半径等于的圆内有长为的弦,则此弦所对的圆周角为( )A.120 B .30或120 C.60 D.60或120 10.已知O1、O2、O3两两外切,且半径分别为、,则O1 O2 O3的形状是( )A锐角三角
3、形 B.直角三角形 C钝角三角形 D.等腰直角三角形. 二、填空题(每小题3分,共30分)11.如图3,已知AB为O的直径,垂足为E,由图你还能知道哪些正确的结论?请把它们一一写出来._. 图3 图4 图5 12.如图4,AB是O的直径,C为圆上一点A=60,D为垂足,且OD=10,则AB=_,BC=_. 13.如图5,已知O中,弧AB=弧BC,且弧AB:弧AMC=3:4,则_. 14.如图6,在条件:;AC=AD=OA;点E分别是AO、CD的中点;,且中,能推出四边形OCAD是菱形的条件有_个. 图6 图7 15.为了改善市区人民的生活环境,某市建设污水管网工程,某圆柱型水管的直径为100c
4、m,截面如图7所示,若管内的污水的面宽,则污水的最大深度为_.16. O的直径为11cm,圆心到一直线的距离为5cm,那么这条直线和圆的位置关系是_;若圆心到一直线的距离为5.5cm,那么这条直线和圆的位置关系是_;17. 若两圆相切,圆心距为8cm,其中一个圆的半径为12cm,则另一个圆的半径为_.18.正五边形的一个中心角的度数是_,19.已知O1和O2的半径分别为2和3,如果它们既不相交又不相切,那么它们的圆心距d的取值范围是_.20.已知在同一平面内圆锥两母线在顶点处最大的夹角为,母线长为8,则圆锥的侧面积为_.三.解答题(共60分)21.(6分)如图8,已知中,AC=3,BC=4,已
5、点C为圆心作C,半径为.(1) 当取什么值时,点A、B在C外?(2)当取什么值时,点A在C内,点B在C外? 图8 22.(6分)如图9,两个同心圆,作一直线交大圆于A、B,交小圆于C、D,AC与BD有何关系?请说明理由. 图923.(6分)如图10,PA、PB是O的两条切线,A、B是切点,AC是O的直径,BAC=35,求p的度数. 图1024.(8分)如图11,P是O的直径AB上的一点,PC交O于C,OCP的平分线交O于D,当点P在半径OA(不包括O点和A点)上移动时,试探究弧AD与弧BD的大小关系. 图1125.(8分).如图12,O的半径OA=5,点C是弦AB上的一点,且,OC=BC.求A
6、B的长. 图12 26.(8分)如图13,O的直径AB和弦CD相交于点E,已知AE=1,EB=5,DEB=60,求CD的长. 图13 27.(8分)现有边长为a的正方形花布,问怎样剪裁,才能得到一个面积最大的正八边形花布来做一个形状为正八边形的风筝?28(10分)如图14,已知一底面半径为r,母线长为3r的圆锥,在地面圆周上有一蚂蚁位于A点,它从A点出发沿圆锥面爬行一周后又回到原出发点,请你给它指出一条爬行最短的路径,并求出最短路径的长. 图14.备用题1.如图1,中,AB=AC,BD是ABC的平分线,A、B、D三点的圆与BC相交于点E,你认为AD=CE吗?如果不能,请举反例;如果AD=CE,
7、请说明理由. 图1 2.如图2,在直角梯形ABCD中,ABCD,以AD为直径的圆切BC于E,谅解OB、OC,试探究OB与OC有何位置关系? 图2答案一.1A 2A 3C 4A 5B 6C 7B 8C 9D 10B二.11.CE=DE,;12.40,;13.; 14. 4;15. 90;16.相交、相切;17. 4cm或16cm;18.72; 19.或; 20.32.三.21,r 3, 3r4;22. AC=BD. 理由:作于E,(如图1)由垂径定理得AE=BE,CE=DE,所以AE-CE=BE-DE,即AC=BD. ( 图1) 图223. 因为BAC=35,所以AOB=180-352=110,
8、因为PA、PB是的切线,所以PA0=PBO=90,所以P=360-PA0-PBO-AOB=70.24.理由 如图2,延长CP交于E,延长CO交于F, 因为PCD=FCD,所以 因为直径,所以 因为 A0C=BOF,所以,所以 ,所以,即.25. 因为,所以AC=BC,又OC=BC,所以OC=AC=BC 设OC=AC=BC=,在中, 解得,所以.26.作于F,(如图3)则CF=EF,连结DO,在中,OEF=DEB=60,EOF=30OE=OA-AE=,所以,所以,所以 . 图3 图4 图527.如图4,将正方形花布的四个角各截去一个全等的直角三角形,设 DF=GC=, 则 因为,EF=FG,所以,解得因此,应从正方形花布的四个角各截去一个全等的直角边为的等腰直角三角形.28.圆锥的侧面展开图如图5所示,则线段的长为最短路径设扇形的圆心角为,则,解得作,因为OA=3r所以,由勾股定理求得,所以,即蚂蚁从A点出发沿圆锥面爬行一周后又回到原出发点的最短路径长为.备用题.1.连结DE,(如图6)因为BD是的平分线,所以,所以AD=DE,因为AB=AC,所以,因为所以,所以CE=DE, 所以AD=CE. 图6 如图72. 连结OE,(如图7)由切线性质及切线长定理可得: , 所以 所以 即,所以.