1、 八年级(上)期末数学试卷 题号一二三四总分得分一、选择题(本大题共10小题,共30.0分)1. 下列各图中,不是轴对称图形的是()A. B. C. D. 2. 若分式1x1有意义,则x的取值范围是()A. x1B. x=1C. x1D. x13. 下列计算正确的是()A. b3b3=2b3B. (x+2)(x2)=x22C. (a+b)2=a2+b2D. (2a)2=4a24. 在平面直角坐标系中,点A(2,5)与点B关于y轴对称,则点B的坐标是()A. (5,2)B. (2,5)C. (2,5)D. (2,5)5. 某芯片的电子元件的直径为0.0000034米,该电子元件的直径用科学记数法
2、可以表示为()A. 0.34106米B. 3.4106米C. 34105米D. 3.4105米6. 已知多项式x2+kx+36是一个完全平方式,则k=()A. 12B. 6C. 12或12D. 6或67. 一个多边形的内角和是900,则这个多边形的边数是()A. 6B. 7C. 8D. 98. 如图,甲是一块直径为2a+2b的圆形钢板,从中挖去直径分别为2a、2b的两个圆,则剩下的钢板的面积为()A. abB. 2abC. 3abD. 4ab9. 已知关于x的多项式-x2+mx+4的最大值为5,则m的值可能为()A. 1B. 2C. 4D. 510. 如图,点C为线段AB上一点,且AC=2CB
3、,以AC、CB为边在AB的同侧作等边ADC和等边EBC,连接DB、AE交于点F,连接FC,若FC=3,设DF=a、EF=b,则a、b满足()A. a=2b+1B. a=2b+2C. a=2bD. a=2b+3二、填空题(本大题共6小题,共18.0分)11. 分式x1x的值为0,则x的值是_12. 分式32xy与1y2的最简公分母为_13. 已知2m=5,2n=9,则2m+n=_14. 计算:已知:a+b=3,ab=1,则a2+b2=_15. 如图,在RtABC中,C=30,将ABC绕点B旋转(060)到ABC,边AC和边AC相交于点P,边AC和边BC相交于Q,当BPQ为等腰三角形时,则=_16
4、. 如图,点C为线段AB的中点,E为直线AB上方的一点,且满足CE=CB,连接AE,以AE为腰,A为顶角顶点作等腰RtADE,连接CD,当CD最大时,DEC=_三、计算题(本大题共2小题,共16.0分)17. 解方程:(1)xx1-1=3(x1)(x+2);(2)10x2+x6+22x=118. 化简:(x21x22x+1+x+1x1)1x1+x四、解答题(本大题共6小题,共56.0分)19. 分解因式:(1)3mx-6my(2)4xy2-4x2y-y320. 把一张长方形的纸片ABCD沿对角线BD折叠折叠后,边BC的对应边BE交AD于F,求证:BF=DF21. ABC在平面直角坐标系中的位置
5、如图所示,先将ABC向右平移3个单位,再向下平移1个单位到A1B1C1,A1B1C1和A2B2C2关于x轴对称(1)画出A1B1C1和A2B2C2;(2)在x轴上确定一点P,使BP+A1P的值最小,直接写出P的坐标为_;(3)点Q在坐标轴上且满足ACQ为等腰三角形,则这样的Q点有_个22. 甲、乙两工程队承包一项工程,如果甲工程队单独施工,恰好如期完成;如果乙工程队单独施工就要超过6个月才能完成,现在甲、乙两队先共同施工4个月,剩下的由乙队单独施工,则恰好如期完成(1)问原来规定修好这条公路需多少长时间?(2)现要求甲、乙两个工程队都参加这项工程,但由于受到施工场地条件限制,甲、乙两工程队不能
6、同时施工已知甲工程队每月的施工费用为4万元,乙工程队每月的施工费用为2万元为了结算方便,要求:甲、乙的施工时间为整数个月,不超过15个月完成当施工费用最低时,甲、乙各施工了多少个月?23. 等边ABC中,点H在边BC上,点K在边AC上,且满足AK=HC,连接AH、BK交于点F(1)如图1,求AFB的度数;(2)如图2,连接FC,若BFC=90,点G为边AC上一点,且满足GFC=30,求证:AGBG;(3)如图3,在(2)条件下,在BF上取D使得DF=AF,连接CD交AH于E,若DEF面积为1,则AHC的面积为_24. 在平面直角坐标系中,已知A(0,a)、B(b,0),且a、b满足:a2+b2
7、-4a+4b+8=0,点D为x正半轴上一动点(1)求A、B两点的坐标;(2)如图,ADO的平分线交y轴于点C,点F为线段OD上一动点,过点F作CD的平行线交y轴于点H,且AFH=45,判断线段AH、FD、AD三者的数量关系,并予以证明;(3)以AO为腰,A为顶角顶点作等腰ADO,若DBA=30,直接写出DAO的度数_答案和解析1.【答案】C【解析】【分析】本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.根据轴对称图形的概念求解.【解答】解:A.是轴对称图形,故错误;B.是轴对称图形,故错误;C.不是轴对称图形,故正确;D.是轴对称图形,故错误.故选C.
8、2.【答案】A【解析】解:由题意得,x-10, 解得x1 故选:A根据分式有意义,分母不等于0列不等式求解即可本题考查了分式有意义的条件,从以下三个方面透彻理解分式的概念: (1)分式无意义分母为零;(2)分式有意义分母不为零;(3)分式值为零分子为零且分母不为零3.【答案】D【解析】解:A、b3b3=b6,此选项错误; B、(x+2)(x-2)=x2-4,此选项错误; C、(a+b)2=a2+2ab+b2,此选项错误; D、(-2a)2=4a2,此选项正确; 故选:D根据整式的乘法分别计算各选项即可得出答案本题主要考查整式的混合运算,解题的关键是熟练掌握整式的乘法运算法则4.【答案】C【解析
9、】解:点P(m,n)关于y轴对称点的坐标P(-m,n) 点P(2,5)关于y轴对称的点的坐标为(-2,5) 故选:C考查平面直角坐标系点的对称性质此题考查平面直角坐标系点对称的应用5.【答案】B【解析】解:某芯片的电子元件的直径为0.0000034米,该电子元件的直径用科学记数法可以表示为3.410-6米 故选:B绝对值小于1的正数也可以利用科学记数法表示,一般形式为a10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定本题考查用科学记数法表示较小的数,一般形式为a10-n,其中1|a|10,n为由原数左边起第一个不为零的数字前面的
10、0的个数所决定6.【答案】C【解析】解:多项式x2+kx+36是一个完全平方式, k=12或-12, 故选:C利用完全平方公式的结构特征判断即可求出k的值此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键7.【答案】B【解析】解:设这个多边形的边数为n, 则有(n-2)180=900, 解得:n=7, 这个多边形的边数为7 故选:B本题根据多边形的内角和定理和多边形的内角和等于900,列出方程,解出即可本题主要考查多边形的内角和定理,解题的关键是根据已知等量关系列出方程从而解决问题8.【答案】B【解析】解:所剩钢板的面积=(a+b)2-a2-b2=2ab, 故选:B剩下钢板的面积=直径为
11、2a+2b的大圆面积-两个小圆的面积,依此列式计算即可此题考查了列代数式,涉及的知识有:圆的面积公式,完全平方公式,熟练掌握公式及法则是解本题的关键9.【答案】B【解析】解:-x2+mx+4=-(x-)2+()2+4,因为关于x的多项式-x2+mx+4的最大值为5,所以()2+4=5,解得:m=2,所以可能为2故选:B将多项式配方后解答即可此题考查配方法的运用,关键是将多项式配方后解答10.【答案】D【解析】解:如图作CMAE于M,CNBD于N在AE上取一点H使得CH=CFACD,BCE度数等边三角形,CA=CD,CE=CB,ACD=ECB=60,ACE=DCB,ACEDCB,CAE=CDB,
12、AE=BD,SACE=SDCB,AECM=BDCN,CM=CN,CMAE于M,CNBD于N,CFA=CFB,CAE=CDB,可得DFA=DCA=60,DFA=CFA=CFB=60,CH=CF,CFH是等边三角形,FCH=ACD=60,CH=CF=FH,ACH=DCF,CA=CD,CH=CF,ACHDCF,AH=DF,AF=AH+FH=DF+FC=a+3,同理可得BF=FE+FC=b+3,=2,AF=2BF,a+3=2(b+3),a=2b+3,故选:D如图作CMAE于M,CNBD于N在AE上取一点H使得CH=CF首先证明AF=FD+FC,FB=FE+FC,再根据=2,推出AF=2BF,列出关系式
13、即可解决问题;本题考查全等三角形的判定和性质、等边三角形的性质、角平分线的判定定理三角形的面积等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考,选择题中的压轴题11.【答案】1【解析】解:分式的值为0,x-1=0且x0,x=1故答案为1根据分式的值为零的条件得到x-1=0且x0,易得x=1本题考查了分式的值为零的条件:当分式的分母不为零,分子为零时,分式的值为零12.【答案】2xy2【解析】解:对于分母2xy与y2, 其系数的最小公倍数是2,y与y2指数最高的是y2, x只在一个中含有, 所以最简公分母是2xy2 故答案为:2xy2题目给出的两个分式的分母都是单项式,可
14、根据最简公分母的定义直接确定本题考查了确定最简公分母若分式分母含有多项式,先把分母因式分解,再确定最简公分母13.【答案】45【解析】解:2m=5,2n=9, 2m+n=2m2n=59=45 故答案为:45直接利用同底数幂的乘法运算法则计算得出答案此题主要考查了同底数幂的乘法运算,正确掌握运算法则是解题关键14.【答案】7【解析】解:a+b=3,ab=1, a2+b2=(a+b)2-2ab=32-2=9-2=7 故答案为:7将所求式子利用完全平方公式变形后,把a+b与ab的值代入即可求出值此题考查了完全平方公式的运用,熟练掌握完全平方公式是解本题的关键15.【答案】20或40【解析】解:如图,
15、过B作BDAC于D,过B作BEAC于E,由旋转可得,ABCABC,则BD=BE,BP平分APC,又C=C=30,BQC=PQC,CBQ=CPQ=,BPQ=(180-CPQ)=90-,分三种情况:如图所示,当PB=PQ时,PBQ=PQB=C+QBC=30+,BPQ+PBQ+PQB=180,90-+2(30+)=180,解得=20;如图所示,当BP=BQ时,BPQ=BQP,即90-=30+,解得=40;当QP=QB时,QPB=QBP=90-,又BQP=30+,BPQ+PBQ+BQP=2(90-)+30+=210180(不合题意),故答案为:20或40过B作BDAC于D,过B作BEAC于E,根据旋转
16、可得ABCABC,则BD=BE,进而得到BP平分APC,再根据C=C=30,BQC=PQC,可得CBQ=CPQ=,即可得出BPQ=(180-CPQ)=90-,分三种情况讨论,利用三角形内角和等于180,即可得到关于的方程,进而得到结果本题主要考查了等腰三角形的性质以及旋转的性质的运用,解决问题的关键是利用全等三角形对应边上高相等,得出BP平分APC,解题时注意分类思想的运用16.【答案】67.5【解析】解:如图1中,将线段CA绕点A逆时针旋转90得到线段AH,连接CH,DCDAE=HAC=90,DAH=EAC,DA=EA,HA=CA,DAHEAC(SAS),DH=CE=定值,CDDH+CH,C
17、H是定值,当D,C,H共线时,DC定值最大,如图2中,此时AHD=ACE=135,ECB=45,DCE=ACE-ACH=90,ECB=CAE+CEA,CA=CE,CAE=CEA=22.5,ADH=AEEC=22.5,CDE=45-22.5=22.5,DEC=90-22.5=67.5故答案为:67.5如图1中,将线段CA绕点A逆时针旋转90得到线段AH,连接CH,DC首先证明DAHEAC(SAS),推出DH=CE=定值,由CDDH+CH,CH是定值,推出当D,C,H共线时,DC定值最大,如图2中,求出CDE=22,5,DCE=90即可解决问题本题考查旋转变换,等腰直角三角形的性质,全等三角形的判
18、定和性质,三角形的三边关系等知识,解题的关键是添加常用辅助线构造全等三角形17.【答案】解:(1)去分母得:x2+2x-x2-x+2=3,解得:x=1,经检验x=1是增根,分式方程无解;(2)去分母得:10-2x-6=x2+x-6,解得:x=2或x=-5,经检验x=2是增根,分式方程的解为x=-5【解析】两分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验18.【答案】解:原式=(x1)(x+1)(x1)2+x+1x11x1+x=(x+1x1+x+1x1)1x1+x=2(x+1)x11x1+x=-2【
19、解析】先计算括号内的加法,再计算乘法即可得本题主要考查分式的混合运算,分式的混合运算,一般按常规运算顺序,但有时应先根据题目的特点,运用乘法的运算律进行灵活运算19.【答案】解:(1)3mx-6my=3m(x-2y);(2)原式=-y(-4xy+4x2+y2)=-y(y-2x)2【解析】(1)直接提取公因式3m,进而分解因式得出答案; (2)首先提取公因式-y,再利用完全平方公式分解因式即可此题主要考查了公式法以及提取公因式法分解因式,正确运用公式是解题关键20.【答案】证明:由折叠的性质知,CD=ED,BE=BC四边形ABCD是矩形,在ABF和EDF中,BAF=DEF=90AFB=EFDAB
20、=ED,ABFEDF(AAS),BF=DF;【解析】由翻折的性质可知EBD=CBD,由矩形的性质可知:ADBC,从而得到ADB=DBC,于是EBD=ADB,故此BF=DF本题主要考查的是翻折的性质、全等三角形的性质和判定、勾股定理的应用,由翻折的性质找出相等的角或边是解题的关键21.【答案】(-35,0) 7【解析】解:(1)如图所示,A1B1C1和A2B2C2即为所求;(2)如图所示,连接BA2,交x轴于点P,则点P即为所求;由B(-3,2),A2(3,-3)可得,直线BA2的解析式为y=-x-,令y=0,则x=-,P(-,0),故答案为:P(-,0);(3)根据点Q在坐标轴上且满足ACQ为
21、等腰三角形,可得这样的Q点有7个故答案为:7(1)ABC向右平移3个单位,再向下平移1个单位到A1B1C1,A1B1C1和A2B2C2关于x轴对称,据此作图即可;(2)依据轴对称的性质,连接BA2,交x轴于点P,此时BP+A1P的值最小,依据直线BA2的解析式,即可得到点P的坐标;(3)在平面直角坐标系中,作线段AC的垂直平分线,与坐标轴有2个交点,分别以A,C为圆心,AC长为半径画弧,与坐标轴的交点有5个,即可得到Q点的数量本题主要考查了利用平移以及轴对称变换进行作图以及最短路线问题,凡是涉及最短距离的问题,一般要考虑线段的性质定理,多数情况要作点关于某直线的对称点22.【答案】解:(1)设
22、原来规定修好这条公路需x个月根据题意,得4(1x+1x+6)+x4x+6=1,解得:x=12检验:当x=12时,x(x+6)0,经检验,x=12是原方程的解,且满足题意答:规定修好路的时间为12个月;(2)设甲工作了a个月,乙工作了b个月完成任务,施工费用为w元根据题意,得a12+b18=1a+b15,由可得:b=18-1.5a,代入中:018-1.5a+a15,6a36,又a,b均为整数,a=6,b=9,W1=46+92=42(万元),a=8,b=6,W2=84+62=44(万元),a=10,b=3,W3=104+32=46(万元)W1W2W3,工费最低时,甲工作了6个月,乙工作9个月【解析
23、】(1)设原来规定修好这条公路需x个月,则甲修好这条公路需x个月,乙修好这条公路需(x+6)个月,根据“现在甲、乙两队先共同施工4个月,剩下的由乙队单独施工,则恰好如期完成”列出方程,解方程即可;(2)设甲工作了a个月,乙工作了b个月完成任务,施工费用为w元根据题意,列出关系式,求出b=18-1.5a,6a36,再根据a,b均为整数,得出a,b的取值情况,进而得到相应的施工费用,比较即可本题考查分式方程的应用,分析题意,找到合适的等量关系是解决问题的关键23.【答案】73【解析】解:(1)ABC是等边三角形,BAK=ACH=60,AB=AC,在ABK和CAH中,ABKCAHHAC=ABK,BF
24、H=ABK+BAH=BAK=60AFB=120(2)在BF上取M使AF=FM,连MC延长FG交MC于N易得:AFBAMC,AMC=120又AFM为等边,AMB=BMC=60BFC=90,MFC=90,NFC=30FMN为等边,且FN=NCNC=FN=FM=AF,AGFCGNAG=GC,BGAC;(3)如图3,延长BF至M,使FM=DF,BFCF,CD=CM,由(2)知,AFM是等边三角形,AMF=60,AMC=AFB=120,CMD=60,CDM是等边三角形,CDM=60=EFD,DEF是等边三角形,DE=DF=EF,DE=CE=AF,DEF的面积为1,CEF的面积为1,AFC的面积是1,AB
25、F+BAF=BFH=60,ABF+CBD=60,BAF=CBD,AFB=180-BFE=120,BDC=180-EDF=120,AFB=BDC,AB=BC,ABFBCD,BD=AF=DF过点C作CNBF交AH的延长线于N,ECN=N=60,CEN是等边三角形,且CENDEF,CN=DF=BD=EF=EN,CNBF,CHNBHF,=,HF=2HN,HE+EF=HE+EN=HE+HE+HN=2HN,HN=2HE,HE=EN,SCEH=SCEN=,SACH=SAFC+SCEF+SCEH=(1)先判断出ABKCAH,即可得出HAC=ABK,(2)先判断出AFBAMC,即可判断出FMN是等边三角形,进而
26、判断出AGFCGN,即可得出结论;(3)先判断出DEF是等边三角形,进而判断出DE=CE=AF,即可得出CEF的面积为1,AFC的面积是1,再判断出CEN是等边三角形,再判断出CHNBHF,即可得出HE=EN,即可得出结论此题是三角形综合题,主要考查了全等三角形的判定和性质,等边三角形的判定和性质,相似三角形的判定和性质,同底等高的两三角形面积相等,解本题的关键是判断出CDM是等边三角形24.【答案】30或60或150【解析】解:(1)a2+b2-4a+4b+8=0,(a-2)2+(b+2)2=0,(a-2)20,(b+2)20,a-2=0,b+2=0,a=2,b=-2,A(0,2),B(-2
27、,0)(2)结论:AH+FD=AD理由:在AD上取K使AH=AK设HFO=,OAF=45-,HFCD,CDO=ADC=,FAD=45-,AHFAKF,AFK=45,KFD=90-,FKD=90-,FD=DK,AH+FD=AD(3)如图2中:当D1在ABO内部时,可以证明当BD1=OD1时,AO=AD1,此时D1BO=D1OB=15,AOD1=AD1O=75,D1AO=30当D3在BD1的延长线上时,可得OAD3=60,当D2在AB上方时,同法可得OAD3=60,OAD4=150DAO=60或30或150故答案为60或30或150(1)理由非负数的性质即可解决问题;(2)结论:AH+FD=AD;在AD上取K使AH=AK只要证明AHFAKF,FD=DK即可解决问题;(3)分四种情形讨论即可解决问题;本题考查三角形综合题、等腰直角三角形的性质、平行线的性质、角平分线的定义、等腰三角形的性质等知识,解题的关键是学会添加常用辅助线面构造全等三角形解决问题,学会用分类讨论的思想思考问题,属于中考压轴题第17页,共17页