1、1 20222023 学年度第一学期期末练习九年级数学学年度第一学期期末练习九年级数学 注意事项:注意事项:1请准备好必要的答题工具在答题卡上作答,在试卷上作答无效请准备好必要的答题工具在答题卡上作答,在试卷上作答无效 2本试卷共五大题,本试卷共五大题,26 小题,满分小题,满分 150 分,考试时间分,考试时间 120分钟分钟 一、选择题(本题共一、选择题(本题共 10 小题,每小题小题,每小题 3 分,共分,共 30 分,每小题只有一个选项正确)分,每小题只有一个选项正确)1.下列图形中,是中心对称图形的是()A B.C.D.2.下列事件中,是必然事件的是()A.从一个只有白球的盒子里摸出
2、一个球是白球 B.掷一枚硬币,正面朝上 C.任意买一张电影票座位是 3 D.汽车经过红绿灯路口时前方正好是绿灯 3.圆的半径是6.5,如果圆心与直线的距离是4.5,那么直线和圆的位置关系是()A.相交 B.相切 C.相离 D.无法判断 4.如图,已知圆心角BOC=78,则圆周角BAC的度数是()A.156 B.78 C.39 D.12 5.如图,将ABC绕着点 C顺时针旋转 50 后得到ABC若A40,B110,则BCA的度数是()A.90 B.80 C.50 D.30 2 6.若一元二次方程2460 xx有两实数根1x和2,x下列选项正确的是()A.12xx B.124xx C.12 6x
3、x D.12122xxx x 7.在ABCV中,90ACB,若8AC,6BC,则sin A的值为()A.53 B.35 C.45 D.54 8.如图,ABCDEF,AF与BE相交于点G,且2AG,1GD,5DF,则BCCE值()A.35 B.13 C.45 D.54 9.经过某十字路口的汽车,可能直行,也可能向左转或向右转,如果这三种可能性大小相同,求三辆汽车经过这个十字路口时,三辆车全部继续直行的概率为()A.13 B.16 C.19 D.127 10.二次函数2+yaxbx c(0a)的图象是抛物线 G,自变量 x 与函数 y的部分对应值如下表:x 5 4 3 2 1 0 y 4 0 2
4、2 0 4 下列说法正确的是()A.抛物线 G的开口向下 B.抛物线 G 的对称轴是直线2x C.抛物线 G 与 y轴的交点坐标为(0,4)D.当 x3 时,y随 x 的增大而增大 二、填空题(本题共二、填空题(本题共 6 小题,每小题小题,每小题 3 分,共分,共 18 分)分)11.cos?45_ 12.关于x的一元二次方程22 30 xx的根为_ 13.如图,在ABCV中,DEBC,且3AD,2DB,4.5AE,则线段CA_ 3 14.在一个平面上画一组间距为4cmd 的平行线,将一根长度为3cml 的针任意投掷在这个平面上,针可能与某一直线相交,也可能与任意直线都不相交根据记录在下表中
5、的投针试验数据如下:实验次数n 25 50 75 100 125 150 175 200 225 250 相交频数m 0 16 35 48 56 60 70 78 83 95 相交频率/m n 0.32 0.32 0.47 0.48 0.37 0.4 0.4 0.39 0.37 0.38 请你根据表格数据,估计针与直线相交的概率为_.(结果保留一位小数)15.从地面竖直向上跑出一小球,小球的高度h(单位:m)与小球的运动时间t(单位:s)之间的关系式是230206httt.小球运动到_s时,达到最大高度 16.在平面直角坐标系中,将点 A(3,4)绕原点旋转 90 得点 B,则点 B 坐标为_
6、 三解答题三解答题(17-25 题每题题每题 10 分,分,26 题题 12 分,共分,共 102 分分)17.求出图中A的正弦值、余弦值和正切值 18.如图,ADBC,比较AB与CD的长度,并证明你的结论 19.如图,RtABC中,90C,10AB,8AC E 是AC上一点,5AE,EDAB,垂足为 D求AD的长 4 20.有一人患了流感,经过两轮传染后共有 144人患了流感(1)求每轮传染中平均一个人传染了几个人?(2)如果不及时控制,三轮传染后,患流感的有多少人?21.如图,二次函数2yxbxc的图象分别与x轴、y轴相交于A、B、C三点,其对称轴与x轴、线段BC分别交于点E、点F,连接C
7、E,已知点1,0A,0,3C (1)求出该二次函数解析式;(2)B的坐标;D的坐标(3)当y随x增大而减小时,x的取值范围是 ;22.热气球探测器显示,从热气球看一栋楼顶部的仰角为30,看这栋楼楼底的俯角为60,热气球与楼的水平距离为120m,这栋楼有多高(31.73,结果取整数)?23.AB是Oe直径,C是Oe上一点,ODBC,垂足为D,过点A作Oe的切线,与DO的延长线相交于点E 5 (1)如图 1,求证BE;(2)如图 2,连接AD,若53ADBD,求OE的长 24.如图,在ABCV中,90ACB,8BC,点D在AC上,6CD,连接DB,ADDB,点P是边AC上一动点(点P不与点A,D,
8、C重合),过点P作AC的垂线,与AB相交于点Q,连接DQ,设AP示x,PDQV与ABDV重叠部分的面积为S (1)求AC的长;(2)求S关于x的函数解析式,并直接写出自变量x的取值范围 25.如图,ABCV中,ADBC于点D,E是AB上一点,连接DE,2180CBDE.(1)求证2BDECAD;(2)若2BECD,AEDACB,求证ACBD;(3)若AE 32BE,3BDCD,则DEBD=26.如图,在平面直角坐标系xOy中,抛物线22yaxbx与x轴相交于4 010AC,两点,于y轴相交于点B 6 (1)求抛物线的解析式;(2)若P为线段AB中点,连接OP,求三角形PAO的面积;(3)在(2)的条件下,点M是抛物线第二象限上一点,若2APMABO,求点M的横坐标