1、人教人教2019 A版版 选择性必修选择性必修 第第一册一册1.4.2 用空间向量研究距离、夹角问题(2)空间角 第一章空间向量与立体几何学习目标1.理解两异面直线所成角与它们的方向向量之间的关系,会用向量方法求两 异面直线所成角.2.理解直线与平面所成角与直线方向向量和平面法向量夹角之间的关系,会用向量方法求直线与平面所成角.3.理解二面角大小与两个面法向量夹角之间的关系,会用向量方法求二面角的大小.地球绕太阳公转的轨道平面称为“黄道面”,黄道面与地球赤道面交角(二面角的平面角)为2326.黄道面与天球相交的大圆为“黄道”.黄道及其附近的南北宽9以内的区域称为黄道带,太阳及大多数行星在天球上
2、的位置常在黄道带内.黄道带内有十二个星座,称为“黄道十二宫”.从春分(节气)点起,每30便是一宫,并冠以星座名,如白羊座、狮子座、双子座等等,这便是星座的由来.问题导学问题:问题:空间角包括哪些角空间角包括哪些角?求解空间角常用的方法有哪些求解空间角常用的方法有哪些?答案:线线角、线面角、二面角;传统方法和向量法.1.利用向量方法求两异面直线所成角 若两异面直线l1,l2所成角为,它们的方向向量分别为a,b,则有cos=|cos|=.特别提醒:不要将两异面直线所成的角与其方向向量的夹角等同起来,因为两异面直线所成角的范围是 ,而两个向量夹角的范围是0,事实上,两异面直线所成的角与其方向向量的夹
3、角是相等或互补的关系.探究新知1.若异面直线l1,l2的方向向量分别是a=(0,-2,-1),b=(2,0,4),则异面直线l1与l2的夹角的余弦值 等于()答案:B 小试牛刀 2.利用向量方法求直线与平面所成角 若直线l与平面所成的角为,直线l的方向向量为a,平面的法向量为n,则有sin=|cos|=.特别提醒:直线与平面所成的角等于其方向向量与平面法向量所成锐角的余角.2.若直线l的方向向量与平面的法向量的夹角等于120,则直线l与平面所成的角等于()A.120 B.60 C.150 D.30解析:因为直线l的方向向量与平面的法向量的夹角等于120,所以它们所在直线的夹角为60,则直线l与
4、平面所成的角等于90-60=30.答案:D小试牛刀 3.利用向量方法求二面角(1)若二面角-l-的平面角的大小为,其两个面,的法向量分别为n1,n2,则|cos|=|cos|=;(2)二面角的大小还可以转化为两直线方向向量的夹角.在二面角-l-的两个半平面,内,各取一条与棱l垂直的直线,则当直线的方向向量的起点在棱上时,两个方向向量的夹角即为二面角的大小.特别提醒:由于二面角的取值范围是0,而两个面的法向量的方向无法从图形上直观确定,因此不能认为二面角的大小就是其两个面法向量夹角的大小,需要结合具体图形判断二面角是锐角还是钝角,从而求得其大小.A.120 B.150 C.30或150 D.60
5、或120答案:C 小试牛刀解析:设所求二面角的大小为,例1.如图所示,在三棱柱ABC-A1B1C1中,AA1底面ABC,AB=BC=AA1,ABC=90,点E,F分别是棱AB,BB1的中点,试求直线EF和BC1所成的角.思路分析:建立空间直角坐标系,求出直线EF和BC1的方向向量的坐标,求它们的夹角即得直线EF和BC1所成的角.典例解析解:分别以直线BA,BC,BB1为x,y,z轴,建立空间直角坐标系(如右图).1.利用空间向量求两异面直线所成角的步骤利用空间向量求两异面直线所成角的步骤.(1)建立适当的空间直角坐标系.(2)求出两条异面直线的方向向量的坐标.(3)利用向量的夹角公式求出两直线
6、方向向量的夹角.(4)结合异面直线所成角的范围得到两异面直线所成角.2.求两条异面直线所成的角的两个关注点.(1)余弦值非负:两条异面直线所成角的余弦值一定为非负值,而对应的方向向量的夹角可能为钝角.(2)范围:异面直线所成角的范围是 ,故两直线方向向量夹角的余弦值为负时,应取其绝对值.归纳总结跟踪训练1 如图,在正四棱柱ABCD-A1B1C1D1中,AA1=2AB,则异面直线A1B与AD1所成角的 余弦值为.跟踪训练解析:以D为坐标原点,DA,DC,DD1所在直线为x轴,y轴,z轴建立空间直角坐标系Dxyz,设AB=1.则例2.如图所示,四棱锥P-ABCD中,PA底面ABCD,ADBC,AB
7、=AD=AC=3,PA=BC=4,M为线段AD上一点,AM=2MD,N为PC的中点.(1)证明MN平面PAB;(2)求直线AN与平面PMN所成角的正弦值.思路分析:(1)线面平行的判定定理MN平面PAB.(2)利用空间向量计算平面PMN与AN方向向量的夹角直线AN与平面PMN所成角的正弦值.典例解析若直线l与平面的夹角为,利用法向量计算的步骤如下:总结归纳跟踪训练2 在棱长为1的正方体ABCD-A1B1C1D1中,E为CC1的中点,则直线A1B与平面BDE 所成的角为()答案:B 跟踪训练例3.如图,在正方体ABEF-DCEF中,M,N分别为AC,BF的中点,求平面MNA与平面MNB所成锐二面
8、角的余弦值.思路分析:有两种思路,一是先根据二面角平面角的定义,在图形中作出二面角的平面角,然后利用向量方法求出夹角从而得到所成二面角的大小;另一种是直接求出两个面的法向量,通过法向量的夹角求得二面角的大小.典例解析解:设正方体棱长为1.以B为坐标原点,BA,BE,BC所在直线分别为x轴,y轴,z轴建立空间直角坐标系B-xyz,则 利用平面的法向量求二面角 利用向量方法求二面角的大小时,多采用法向量法,即求出两个面的法向量,然后通过法向量的夹角来得到二面角的大小,但利用这种方法求解时,要注意结合图形观察分析,确定二面角是锐角还是钝角,不能将两个法向量的夹角与二面角的大小完全等同起来.总结归纳跟
9、踪训练3 如图,在直三棱柱ABC-A1B1C1中,AA1=BC=AB=2,ABBC,求二面角B1-A1C-C1的大小.跟踪训练解:如图,建立空间直角坐标系.则A(2,0,0),C(0,2,0),A1(2,0,2),B1(0,0,2),C1(0,2,2),设AC的中点为M,因为BMAC,BMCC1,所以BM平面A1C1C,金题典例 如图,四棱柱ABCD-A1B1C1D1的所有棱长都相等,ACBD=O,A1C1B1D1=O1,四边形ACC1A1和四边形BDD1B1均为矩形.(1)证明:O1O底面ABCD.(2)若CBA=60,求二面角C1-OB1-D的余弦值.金题典例(1)证明因为四边形ACC1A
10、1和四边形BDD1B1均为矩形,所以CC1AC,DD1BD,又CC1DD1OO1,所以OO1AC,OO1BD,因为ACBD=O,所以O1O底面ABCD.(2)解:因为四棱柱的所有棱长都相等,所以四边形ABCD为菱形,ACBD.又O1O底面ABCD,所以OB,OC,OO1两两垂直.如图,以O为原点,OB,OC,OO1所在直线分别为x,y,z轴,建立空间直角坐标系.延伸探究1 本例条件不变,求二面角B-A1C-D的余弦值.延伸探究2 本例四棱柱中,CBA=60改为CBA=90,设E,F分别是棱BC,CD的中点,求平面AB1E与平面AD1F所成锐二面角的余弦值.向量法求二面角(或其某个三角函数值)的
11、四个步骤(1)建立适当的坐标系,写出相应点的坐标;(2)求出两个半平面的法向量n1,n2;(3)设二面角的平面角为,则|cos|=|cos|;(4)根据图形判断为钝角还是锐角,从而求出(或其三角函数值).总结归纳1.平面的斜线l与它在这个平面上射影l的方向向量分别为a=(1,0,1),b=(0,1,1),则斜线l与平面所成的角为()A.30 B.45 C.60 D.902.已知向量m,n分别是直线l和平面的方向向量和法向量,若cos=-,则l与所成的角为()A.30 B.60 C.120D.150当堂检测答案:C解析:由已知得直线l和平面法向量所夹锐角为60,因此l与所成的角为30.答案:A3
12、.在正方体ABCD-A1B1C1D1中,M、N分别为棱BC和棱CC1的中点,则异面直线AC和MN所成的角为()A.30 B.45 C.90 D.60解析以D为原点,分别以DA,DC,DD1所在直线为x轴,y轴,z轴建立空间直角坐标系,设正方体ABCD-A1B1C1D1中棱长为2,M、N分别为棱BC和棱CC1的中点,M(1,2,0),N(0,2,1),A(2,0,0),C(0,2,0),设异面直线AC和MN所成的角为,又是锐角,=60.异面直线AC和MN所成的角为60,故选D.答案D4.在三棱锥P-ABC中,ABBC,AB=BC=,点O,D分别是AC,PC的中点,OP底面ABC,则直线OD与平面PBC所成角的正弦值为.5.如图,四棱锥P-ABCD中,PB底面ABCD,CDPD,底面ABCD为直角梯形,ADBC,ABBC,AB=AD=PB=3.点E在棱PA上,且PE=2EA.求二面角A-BE-D的余弦值.解:以B为原点,以直线BC,BA,BP分别为x,y,z轴建立如图所示的空间直角坐标系.课堂小结课堂小结人教人教A版选择性必修版选择性必修第一册第一册