1、17.1.1 勾股定理勾股定理祝同学们学习快乐祝同学们学习快乐这就是本届大会这就是本届大会会徽的图案会徽的图案活动活动 1 1你见过这个图案吗?你见过这个图案吗?你听说过勾股定理吗?你听说过勾股定理吗?这个图案是我国汉代数学这个图案是我国汉代数学家赵爽在证明勾股定理时用到家赵爽在证明勾股定理时用到的,被称为的,被称为“赵爽弦图赵爽弦图”读一读读一读 我国古代把直角三角形中较短的直角边称为我国古代把直角三角形中较短的直角边称为勾勾,较长的直角边称为较长的直角边称为股股,斜边称为,斜边称为弦弦.图图1-1称为称为“弦图弦图”,最早是由三国时期的数学家赵爽在为,最早是由三国时期的数学家赵爽在为周髀算
2、经周髀算经作法时给出的作法时给出的.弦弦股股勾勾图1-1漂亮的勾股树漂亮的勾股树活动活动 2 2 相传相传2500年前,毕达哥拉斯有一次年前,毕达哥拉斯有一次在朋友家里做客时,发现朋友家用砖铺在朋友家里做客时,发现朋友家用砖铺成的地面中反映了直角三角形三边的某成的地面中反映了直角三角形三边的某种数量关系种数量关系 我们也来观察右我们也来观察右图中的地面,看看有图中的地面,看看有什么发现?什么发现?数学家毕达哥拉斯的发现:数学家毕达哥拉斯的发现:A、B、C的面积有什么关系?的面积有什么关系?直角三角形三边有什么关系?直角三角形三边有什么关系?SA+SB=SC两直边的平方和等于斜边的平方两直边的平
3、方和等于斜边的平方ABCABCABC(图中每个小方格代表一个单位面积)(图中每个小方格代表一个单位面积)图图2-1图2-2让我们一起再探究:等腰直角三角形三边关系A的面的面积积(单位单位长度长度)B的面的面积积(单位单位长度长度)C的面的面积积(单位单位长度长度)图图1图图29918448ABCABC(图中每个小方格代表一个单位面积)(图中每个小方格代表一个单位面积)图图2-1图2-2cS正方形143 3182 分分“割割”成若干个直成若干个直角边为整数的三角形角边为整数的三角形(单位面积)(单位面积)ABCABC(图中每个小方格代表一个单位面积)(图中每个小方格代表一个单位面积)图图2-1图
4、2-2cS正方形216218(单位面积)(单位面积)把把C“补补”成边长为成边长为6的的正方形面积的一半正方形面积的一半ABCABC(图中每个小方格代表一个单位面积)(图中每个小方格代表一个单位面积)图图2-1图2-2 SA+SB=SCA的面的面积积(单位单位长度长度)B的面的面积积(单位单位长度长度)C的面的面积积(单位单位长度长度)图图2-19918图图2-2A、B、C面积面积关系关系直角三直角三角形三角形三边关系边关系448两直角边的平方和等于斜边的平方A AB BC Ca ac cb bS Sa a+S+Sb b=S=Sc c设:直角三角形的三边长分别是设:直角三角形的三边长分别是a、
5、b、c猜想猜想:两直角边两直角边a、b与斜边与斜边c 之间的关系?之间的关系?a a2 2+b+b2 2=c=c2 2bababa bacccc大正方形的面积该怎样表示大正方形的面积该怎样表示?(a+b)2=a2+b2+2ab=c2+2ab可得可得:a2+b2=c2ab2142c证明二证明二活动活动 3 看左边的图案,这个图案是看左边的图案,这个图案是公元公元 3 世纪我国汉代的赵爽在注世纪我国汉代的赵爽在注解解周髀算经周髀算经时给出的,人们时给出的,人们称它为称它为“赵爽弦图赵爽弦图”赵爽根据赵爽根据此图指出:四个全等的直角三角此图指出:四个全等的直角三角形(红色)可以如图围成一个大形(红色
6、)可以如图围成一个大正方形,中间的部分是一个小正正方形,中间的部分是一个小正方形方形(黄色)(黄色)赵爽弦图的证法赵爽弦图的证法224()42SSSabcb a 大大正正方方形形小小正正方方形形直直角角三三角角形形化简得:化简得:c2=a2+b2黄实ba22:ba 它们的面积和acab.,1222cbacba那么斜边长为别为角边长分如果直角三角形的两直命题.,:222cbacba那么斜边长为别为角边长分如果直角三角形的两直勾股定理看一看a a2 2+b+b2 2=c=c2 2a ac cb b 直角三角形两直角边的平方和直角三角形两直角边的平方和等于斜边的平方等于斜边的平方.勾勾股股弦弦 勾股
7、定理勾股定理(毕达哥拉斯定理毕达哥拉斯定理)变式变式1.1.求下列图中表示边的未知数求下列图中表示边的未知数x x、y y、z z的值的值.8181144144x xy yz z625625576576144144169169做一做:做一做:P62540026xP的面积的面积 =_X=_X=_24322622x24225BACAB=_AC=_BC=_251520比比一一比比看看看看谁谁算算得得快!快!2.2.求下列直角三角形中未知边的长求下列直角三角形中未知边的长:可用勾股定理建立方程可用勾股定理建立方程.方法小结方法小结:8 8x x171716162020 x x12125 5x x3、若、若a:b=3:5,b=5,则则a=(),c=()