1、(易错题精选)初中数学圆的难题汇编附答案一、选择题1如图,在中,将绕点按顺时针方向旋转度后得到,此时点在边上,斜边交边于点,则的大小和图中阴影部分的面积分别为( )ABCD【答案】C【解析】试题分析:ABC是直角三角形,ACB=90,A=30,BC=2,B=60,AC=BCcotA=2=2,AB=2BC=4,EDC是ABC旋转而成,BC=CD=BD=AB=2,B=60,BCD是等边三角形,BCD=60,DCF=30,DFC=90,即DEAC,DEBC,BD=AB=2,DF是ABC的中位线,DF=BC=2=1,CF=AC=2=,S阴影=DFCF=故选C考点:1.旋转的性质2.含30度角的直角三角
2、形2将直尺、有60角的直角三角板和光盘如图摆放,A为60角与直尺的交点,B为光盘与直尺的交点,AB=4,则光盘表示的圆的直径是()A4B8C6D【答案】B【解析】【分析】设三角板与圆的切点为C,连接OA、OB,根据切线长定理可得AB=AC=3,OAB=60,然后根据三角函数,即可得出答案.【详解】设三角板与圆的切点为C,连接OA、OB,由切线长定理知,AB=AC=3,AO平分BAC,OAB=60,在RtABO中,OB=ABtanOAB=4,光盘的直径为8故选:B【点睛】本题主要考查了切线的性质,解题的关键是熟练应用切线长定理和锐角三角函数.3如图,ABC的外接圆是O,半径AO=5,sinB=,
3、则线段AC的长为( )A1B2C4D5【答案】C【解析】【分析】首先连接CO并延长交O于点D,连接AD,由CD是O的直径,可得CAD=90,又由O的半径是5,sinB=,即可求得答案【详解】解:连接CO并延长交O于点D,连接AD,由CD是O的直径,可得CAD=90,B和D所对的弧都为弧AC,B=D,即sinB=sinD=,半径AO=5,CD=10,AC=4,故选:C.【点睛】本题考查了同弧所对的圆周角相等,以及三角函数的内容,注意到直径所对的圆周角是直角是解题的关键.4如图,小明随意向水平放置的大正方形内部区域抛一个小豆子,则小豆子落在小正方形内部及边界(阴影)区域的概率为( )ABCD【答案
4、】C【解析】【分析】算出阴影部分的面积及大正方形的面积,这个比值就是所求的概率【详解】解:设小正方形的边长为1,则其面积为1圆的直径正好是大正方形边长,根据勾股定理,其小正方形对角线为,即圆的直径为,大正方形的边长为,则大正方形的面积为,则小球停在小正方形内部(阴影)区域的概率为故选:【点睛】概率相应的面积与总面积之比,本题实质是确定圆的内接正方形和外切正方形的边长比设较小吧边长为单位1是在选择填空题中求比的常见方法.5如图,在O,点A、B、C在O上,若OAB54,则C()A54B27C36D46【答案】C【解析】【分析】先利用等腰三角形的性质和三角形内角和计算出AOB的度数,然后利用圆周角解
5、答即可.【详解】解:OAOB,OBAOAB54,AOB180545472,ACBAOB36故答案为C【点睛】本题考查了三角形内角和和圆周角定理,其中发现并正确利用圆周角定理是解题的关键.6如图,的外切正六边形ABCDEF的边长为2,则图中阴影部分的面积为ABCD【答案】A【解析】【分析】【详解】解:六边形ABCDEF是正六边形,AOB=60,OAB是等边三角形,OA=OB=AB=2,设点G为AB与O的切点,连接OG,则OGAB,OG=OAsin60=2=,S阴影=SOABS扇形OMN=2=故选A7如图,在扇形中,点是弧上的一个动点(不与点、重合),、分别是弦,的中点若,则扇形的面积为( )AB
6、CD【答案】A【解析】【分析】如图,作OHAB于H利用三角形中位线定理求出AB的长,解直角三角形求出OB即可解决问题【详解】解:如图作OHAB于HC、D分别是弦AP、BP的中点CD是APB的中位线,AB2CD,OHAB,BHAH,OAOB,AOB120,AOHBOH60,在RtAOH中,sinAOH,AO,扇形AOB的面积为:,故选:A【点睛】本题考查扇形面积公式,三角形的中位线定理,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型8如图,用半径为,面积的扇形无重叠地围成一个圆锥,则这个圆锥的高为( )A12cmB6cmC62 cmD6 cm【答案】
7、D【解析】【分析】先根据扇形的面积公式计算出扇形的圆心角,再利用周长公式计算出底面圆的周长,得出半径再构建直角三角形,解直角三角形即可【详解】72=解得n=180,扇形的弧长=12cm围成一个圆锥后如图所示:因为扇形弧长=圆锥底面周长即12=2r解得r=6cm,即OB=6cm根据勾股定理得OC=cm,故选D【点睛】本题综合考查了弧长公式,扇形弧长=用它围成的圆锥底面周长,及勾股定理等知识,所以学生学过的知识一定要结合起来9如图,已知AB是O是直径,弦CDAB,AC=2,BD=1,则sinABD的值是()A2BCD3【答案】C【解析】【分析】先根据垂径定理,可得BC的长,再利用直径对应圆周角为9
8、0得到ABC是直角三角形,利用勾股定理求得AB的长,得到sinABC的大小,最终得到sinABD【详解】解:弦CDAB,AB过O,AB平分CD,BC=BD,ABC=ABD,BD=1,BC=1,AB为O的直径,ACB=90,由勾股定理得:AB=,sinABD=sinABC=故选:C【点睛】本题考查了垂径定理、直径对应圆周角为90、勾股定理和三角函数,解题关键是找出图形中的直角三角形,然后按照三角函数的定义求解10如图,在中,将绕一逆时针方向旋转得到,点经过的路径为弧,则图中阴影部分的面积为( )ABCD【答案】D【解析】【分析】由旋转的性质可得ACBAED,DAB=40,可得AD=AB=5,SA
9、CB=SAED,根据图形可得S阴影=SAED+S扇形ADB-SACB=S扇形ADB,再根据扇形面积公式可求阴影部分面积【详解】将ABC绕A逆时针方向旋转40得到ADE,ACBAED,DAB=40,AD=AB=5,SACB=SAED,S阴影=SAED+S扇形ADB-SACB=S扇形ADB,S阴影=,故选D.【点睛】本题考查了旋转的性质,扇形面积公式,熟练掌握旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.11一个圆锥的侧面展开图是半径为1的半圆,则该圆锥的底面半径是( )ABCD1【答案】B【解析】【分析】根据侧面展开图的弧长等于圆锥的底面
10、周长,即可求得底面周长,进而即可求得底面的半径长【详解】圆锥的底面周长是:;设圆锥的底面半径是r,则2r=解得:r=故选B【点睛】本题考查了圆锥的计算,正确理解理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长12如图,是一块绿化带,将阴影部分修建为花圃.已知,阴影部分是的内切圆,一只自由飞翔的小鸟将随机落在这块绿化带上,则小鸟落在花圃上的概率为( ).ABCD【答案】B【解析】【分析】由AB=5,BC=4,AC=3,得到AB2=BC2+AC2,根据勾股定理的逆定理得到ABC为直角三角形,于是得到ABC的内切圆半径=1,求得直
11、角三角形的面积和圆的面积,即可得到结论【详解】解:AB=5,BC=4,AC=3,AB2=BC2+AC2,ABC为直角三角形,ABC的内切圆半径=1,SABC=ACBC=43=6,S圆=,小鸟落在花圃上的概率= ,故选B【点睛】本题考查几何概率,直角三角形内切圆的半径等于两直角边的和与斜边差的一半及勾股定理的逆定理,解题关键是熟练掌握公式.13如图,将ABC绕点C旋转60得到ABC,已知AC=6,BC=4,则线段AB扫过的图形面积为()ABC6D以上答案都不对【答案】D【解析】【分析】从图中可以看出,线段AB扫过的图形面积为一个环形,环形中的大圆半径是AC,小圆半径是BC,圆心角是60度,所以阴
12、影面积=大扇形面积-小扇形面积【详解】阴影面积=故选D【点睛】本题的关键是理解出,线段AB扫过的图形面积为一个环形14如图,在矩形中,对角线,内切于,则图中阴影部分的面积是( )ABCD【答案】D【解析】【分析】先根据勾股定理求出BC,连接OA、OB、OC、过点O作OHAB,OEBC,OFAC,设的半径为r,利用面积法求出r=2,再利用三角形ABC的面积减去圆O的面积得到阴影的面积【详解】四边形ABCD是矩形,B=90,BC=8,连接OA、OB、OC、过点O作OHAB,OEBC,OFAC,设的半径为r,内切于,OH=OE=OF=r,解得r=2,的半径为2,故选:D【点睛】此题考查矩形的性质,勾
13、股定理,三角形内切圆的定义,阴影面积的求法,添加合适的辅助线是解题的关键15如图,以正方形ABCD的AB边为直径作半圆O,过点C作直线切半圆于点E,交AD边于点F,则( )ABCD【答案】C【解析】【分析】连接OE、OF、OC,利用切线长定理和切线的性质求出OCFFOE,证明EOFECO,利用相似三角形的性质即可解答【详解】解:连接OE、OF、OCAD、CF、CB都与O相切,CECB;OECF; FO平分AFC,CO平分BCFAFBC,AFC+BCF180,OFC+OCF90,OFC+FOE90,OCFFOE,EOFECO,即OE2EFEC设正方形边长为a,则OEa,CEaEFa故选:C【点睛
14、】本题考查切线的性质、切线长定理、相似三角形的判定与性质,其中通过作辅助线构造相似三角形是解答本题的关键.16如图,3个正方形在O直径的同侧,顶点B、C、G、H都在O的直径上,正方形ABCD的顶点A在O上,顶点D在PC上,正方形EFGH的顶点E在O上、顶点F在QG上,正方形PCGQ的顶点P也在O上若BC1,GH2,则CG的长为( )ABCD【答案】B【解析】【分析】【详解】解:连接AO、PO、EO,设O的半径为r,OC=x,OG=y,由勾股定理可知:,得到:x2+(x+y)2(y+2)222=0,(x+y)222=(y+2)2x2,(x+y+2)(x+y2)=(y+2+x)(y+2x)x+y+
15、20,x+y2=y+2x,x=2,代入得到r2=10,代入得到:10=4+(x+y)2,(x+y)2=6x+y0,x+y=,CG=x+y=故选B点睛:本题考查了正方形的性质、圆、勾股定理等知识,解题的关键是设未知数列方程组解决问题,难点是解方程组,利用因式分解法巧妙求出x的值,学会把问题转化为方程组,用方程组的思想去思考问题17如图,点A、B、C、D、E、F等分O,分别以点B、D、F为圆心,AF的长为半径画弧,形成美丽的“三叶轮”图案已知O的半径为1,那么“三叶轮”图案的面积为()A+B-CD【答案】B【解析】【分析】连接OA、OB、AB,作OHAB于H,根据正多边形的中心角的求法求出AOB,
16、根据扇形面积公式计算【详解】连接OA、OB、AB,作OHAB于H,点A、B、C、D、E、F是O的等分点,AOB=60,又OA=OB,AOB是等边三角形,AB=OB=1,ABO=60,OH=,“三叶轮”图案的面积=(-1)6=-,故选B【点睛】本题考查的是正多边形和圆、扇形面积的计算,掌握正多边形的中心角的求法、扇形面积公式是解题的关键18如图,已知O的半径是4,点A,B,C在O上,若四边形OABC为菱形,则图中阴影部分面积为( )ABCD【答案】B【解析】【分析】连接OB和AC交于点D,根据菱形及直角三角形的性质先求出AC的长及AOC的度数,然后求出菱形ABCO及扇形AOC的面积,则由S扇形A
17、OC-S菱形ABCO可得答案【详解】连接OB和AC交于点D,如图所示:圆的半径为4,OB=OA=OC=4,又四边形OABC是菱形,OBAC,OD=OB=2,在RtCOD中利用勾股定理可知:CD=,sinCOD= COD=60,AOC=2COD=120,S菱形ABCO=,S扇形=,则图中阴影部分面积为S扇形AOC-S菱形ABCO=.故选B.【点睛】考查扇形面积的计算及菱形的性质,解题关键是熟练掌握菱形的面积=ab(a、b是两条对角线的长度);扇形的面积=.19如图,有一圆锥形粮堆,其侧面展开图是半径为6m的半圆,粮堆母线AC的中点P处有一老鼠正在偷吃粮食,此时,小猫正在B处,它要沿圆锥侧面到达P
18、处捕捉老鼠,则小猫所经过的最短路程长为()A3mBmCmD4m【答案】C【解析】【分析】【详解】如图,由题意得:AP=3,AB=6, 在圆锥侧面展开图中 故小猫经过的最短距离是故选C.20中国科学技术馆有“圆与非圆”展品,涉及了“等宽曲线”的知识因为圆的任何一对平行切线的距离总是相等的,所以圆是“等宽曲线”除了例以外,还有一些几何图形也是“等宽曲线”,如勒洛只角形(图1),它是分别以等边三角形的征个顶点为圆心,以边长为半径,在另两个顶点间画一段圆弧三段圆弧围成的曲边三角形图2是等宽的勒洛三角形和圆下列说法中错误的是( )A勒洛三角形是轴对称图形B图1中,点A到上任意一点的距离都相等C图2中,勒
19、洛三角形上任意一点到等边三角形DEF的中心的距离都相等D图2中,勒洛三角形的周长与圆的周长相等【答案】C【解析】【分析】根据轴对称形的定义,可以找到一条直线是的图像左右对着完全重合,则为轴对称图形.鲁列斯曲边三角形有三条对称轴. 鲁列斯曲边三角形可以看成是3个圆心角为60,半径为DE的扇形的重叠,根据其特点可以进行判断选项的正误.【详解】鲁列斯曲边三角形有三条对称轴,就是等边三角形的各边中线所在的直线,故正确;点A到上任意一点的距离都是DE,故正确;勒洛三角形上任意一点到等边三角形DEF的中心的距离都不相等,到顶点的距离是到边的中点的距离的2倍,故错误;鲁列斯曲边三角形的周长=3 ,圆的周长= ,故说法正确.故选C.【点睛】主要考察轴对称图形,弧长的求法即对于新概念的理解