1、垂直于弦的直径教学目标:教学目标:1.理解圆的轴对称性。理解圆的轴对称性。2.理解并掌握垂径定理。理解并掌握垂径定理。3.会利用垂径定理进行相关的计算和证明。会利用垂径定理进行相关的计算和证明。复习回忆复习回忆:1.举例说明,轴对称图形的定义。举例说明,轴对称图形的定义。2.圆是轴对称图形吗?对称轴是什么?圆是轴对称图形吗?对称轴是什么?3.举例说明,中心对称图形的定义。举例说明,中心对称图形的定义。4.圆是中心对称图形吗?对称中心是什么?圆是中心对称图形吗?对称中心是什么?探究:探究:活动活动(1),在一张纸上,任意画一个圆,沿圆在一张纸上,任意画一个圆,沿圆周剪下,把这个圆对折,使圆的两半
2、重合,周剪下,把这个圆对折,使圆的两半重合,折痕为折痕为CD。活动活动(2),在在 O上任意取一点上任意取一点A,过点,过点A作作折痕折痕CD的垂线的垂线AB(B在圆上在圆上),垂足为,垂足为E.活动活动(3),再将再将 O沿沿CD对折,你发现有哪些对折,你发现有哪些相等的线段和相等的弧呢?相等的线段和相等的弧呢?(学生讨论说明学生讨论说明)DBAOCE 垂直于弦的直径平分弦,垂直于弦的直径平分弦,并且平分弦所对的两条弧。并且平分弦所对的两条弧。垂径定理垂径定理:AEBECD是直径CDAB注意:注意:CD过圆心过圆心DBAOCE你能证明它吗?这是个什么问题?你能证明它吗?这是个什么问题?:CD
3、是圆O的直径,AB是弦,且ABCD于E。求证:AE=BE,AC=BC,AD=BDDBAOCE:CD是圆O的直径,AB是弦,且ABCD于E。求证:AE=BE,AC=BC,AD=BD证明:连接OA,OB,OA=OB,ABCD于E AE=BE A点与B点关于CD对称,又 O关于关于CD对称,对折时,A点与B点重合,AC=BC,AD=BD 垂直于弦的直径平分弦,垂直于弦的直径平分弦,并且平分弦所对的两条弧。并且平分弦所对的两条弧。垂径定理垂径定理:AEBECD是直径CDABCD过圆心DBAOCE推论一:平分弦不是直径的直推论一:平分弦不是直径的直径垂直于弦,并且平分弦所对的两径垂直于弦,并且平分弦所对
4、的两条弧。条弧。(CDAEBEAB是直径CDAB不是直径)定理演绎定理演绎:DBAOCE推论二推论二.CD是直径是直径(或或CD过圆心过圆心)AE=BECDABCDABAE=BECD是直径是直径(或或CD过圆心过圆心)推论三推论三.一般地一般地:在这五个结论中在这五个结论中,如果有其中两个成如果有其中两个成立立,就可以推出另外三个存在就可以推出另外三个存在.即即:有有2就有三就有三试一试试一试驶向胜利的彼岸挑战自我挑战自我填一填填一填 1、判断:、判断:垂直于弦的直线平分这条弦垂直于弦的直线平分这条弦,并且平分弦所对的两并且平分弦所对的两条弧条弧.平分弦所对的一条弧的直径一定平分这条弦所对的平
5、分弦所对的一条弧的直径一定平分这条弦所对的另一条弧另一条弧.经过弦的中点的直径一定垂直于弦经过弦的中点的直径一定垂直于弦.圆的两条弦所夹的弧相等,那么这两条弦平行圆的两条弦所夹的弧相等,那么这两条弦平行.弦的垂直平分线一定平分这条弦所对的弧弦的垂直平分线一定平分这条弦所对的弧.BAOCD例例1.:以:以O为圆心的两个同心圆为圆心的两个同心圆,大圆的弦大圆的弦AB交小交小圆于圆于C、D两点,求证:两点,求证:AC=BD 应用知识应用知识:E变式变式.:如图,线段:如图,线段AB与与 O交于交于C、D两点,且两点,且OA=OB 求证:求证:AC=BD BOACD证明圆中与弦有关证明圆中与弦有关的线
6、段相等时的线段相等时,常借常借助垂径定理助垂径定理,利用其利用其平分弦的性质来解平分弦的性质来解决问题决问题.M 例例2.2.如图是一条排水管的截面。排水管如图是一条排水管的截面。排水管的半径的半径10cm10cm,水面宽,水面宽AB=12cmAB=12cm。求水的。求水的最大深度最大深度.ED注意:求圆中有关线段的长度时注意:求圆中有关线段的长度时,常借助常借助垂径定理转化为直角三角形垂径定理转化为直角三角形,从而利用勾从而利用勾股定理来解决问题股定理来解决问题.BAO练习练习1:如图,如图,CD为圆为圆O的直径,弦的直径,弦AB交交CD于于E,CEB=30,DE=9,CE=3,求弦,求弦A
7、B的长。的长。OABCDEF1.如图,你能设法确定一个圆形纸片的圆心吗?你有多如图,你能设法确定一个圆形纸片的圆心吗?你有多少种方法?与同学交流一下少种方法?与同学交流一下DABCOOO方法一方法一方法二方法二方法三方法三方法四方法四AB使用帮助使用帮助练习二、练习二、1 1 O O的半径为的半径为1010,弦,弦ABCDABCD,AB=12AB=12,CD=16CD=16,那么,那么ABAB和和CDCD的距离为的距离为 2 2如图,如图,ABAB、ACAC为弦,为弦,OMABOMAB于点于点M M,ONACONAC于点于点N N,BC=4BC=4,求,求MNMN的长的长2 2或或1414A
8、AC CO OM MN NB B提高练习提高练习:3:在圆在圆O中,直径中,直径CEAB于于 D,OD=4,弦,弦AC=,求圆求圆O的半径。的半径。10DCEOABABCDEO 课堂小结课堂小结:请你谈谈请你谈谈:垂径定理可以解决一些垂径定理可以解决一些怎样的问题怎样的问题?谢谢!轴对称轴对称引言引言对称现象无处不在,从自然景观到艺术作对称现象无处不在,从自然景观到艺术作品,从建筑物到交通标志,甚至日常生活用品,都可品,从建筑物到交通标志,甚至日常生活用品,都可以找到对称的例子,对称给我们带来美的感受!以找到对称的例子,对称给我们带来美的感受!引出新知引出新知探索新知探索新知问题问题1 1如图
9、,把一张纸对折,剪出一个图案折如图,把一张纸对折,剪出一个图案折痕处不要完全剪断,再翻开这张对折的纸,就得到了痕处不要完全剪断,再翻开这张对折的纸,就得到了美丽的窗花观察得到的窗花,你能发现它们有什么共美丽的窗花观察得到的窗花,你能发现它们有什么共同的特点吗?同的特点吗?追问追问你能举出一些轴对称图形的例子吗?你能举出一些轴对称图形的例子吗?探索新知探索新知如果一个平面图形沿一条直线折叠,直线两旁的部如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,这条直分能够互相重合,这个图形就叫做轴对称图形,这条直 线就是它的对称轴这时,我们也说这个图形关于这条线就是它
10、的对称轴这时,我们也说这个图形关于这条 直线成轴对称直线成轴对称共同特征:共同特征:每一对图形沿着虚线折叠,左边的图形都能与右边每一对图形沿着虚线折叠,左边的图形都能与右边的图形重合的图形重合 探索新知探索新知问题问题2 2观察下面每对图形如图,你能类比前观察下面每对图形如图,你能类比前面的内容概括出它们的共同特征吗?面的内容概括出它们的共同特征吗?追问追问1你能再举出一些两个图形成轴对称的例子吗?你能再举出一些两个图形成轴对称的例子吗?探索新知探索新知把一个图形沿着某一条直线折叠,如果它能够与另把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线成一个图形
11、重合,那么就说这两个图形关于这条直线成轴对称,这条直线叫做对称轴,折叠后重合的点是对轴对称,这条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点应点,叫做对称点 两者的区别:两者的区别:轴对称图形指的是一个图形沿对称轴折叠后这个图轴对称图形指的是一个图形沿对称轴折叠后这个图形的两局部能完全重合,而两个图形成轴对称指的是两形的两局部能完全重合,而两个图形成轴对称指的是两个图形之间的位置关系,这两个图形沿对称轴折叠后能个图形之间的位置关系,这两个图形沿对称轴折叠后能够重合够重合探索新知探索新知追问追问2你能结合具体的图形说明轴对称图形和两个你能结合具体的图形说明轴对称图形和两个 图形成轴对称有什
12、么区别与联系吗图形成轴对称有什么区别与联系吗?两者的联系:两者的联系:把成轴对称的两个图形看成一个整体,它就是一个把成轴对称的两个图形看成一个整体,它就是一个轴对称图形把一个轴对称图形沿对称轴分成两个图轴对称图形把一个轴对称图形沿对称轴分成两个图形,这两个图形关于这条轴对称形,这两个图形关于这条轴对称 探索新知探索新知追问追问2你能结合具体的图形说明轴对称图形和两个你能结合具体的图形说明轴对称图形和两个 图形成轴对称有什么区别与联系吗图形成轴对称有什么区别与联系吗?追问追问1你能说明其中你能说明其中的道理吗?的道理吗?探索新知探索新知问题问题3如图,如图,ABC 和和ABC关于直线关于直线MN
13、 对称,点对称,点A,B,C分别是点分别是点A,B,C 的对称点,线的对称点,线 段段AA,BB,CC与直线与直线MN 有什么关系?有什么关系?ABCMNPABC探索新知探索新知追问追问2 2上面的问题说明上面的问题说明“如果如果ABC ABC 和和ABCABC关于直线关于直线MN MN 对称,那么,直线对称,那么,直线MN MN 垂直垂直线段线段AAAA,BBBB和和CCCC,并且直线,并且直线MN MN 还平分线段还平分线段AAAA,BBBB和和CCCC如如果将其中的果将其中的“三角形改为三角形改为“四边形四边形“五边形五边形其其他条件不变,上述结论还成他条件不变,上述结论还成立吗?立吗?
14、ABCMNPABC经过线段中点并且垂直经过线段中点并且垂直于这条线段的直线,叫做这于这条线段的直线,叫做这条线段的垂直平分线条线段的垂直平分线 探索新知探索新知问题问题3如图,如图,ABC 和和ABC关于直线关于直线MN 对称,点对称,点A,B,C分别是点分别是点A,B,C 的对称点,线的对称点,线段段AA,BB,CC与直线与直线MN 有什么关系?有什么关系?ABCMNPABC探索新知探索新知追问追问3你能用数学语言概括前面的结论吗?你能用数学语言概括前面的结论吗?成轴对称的两个图形的性质:成轴对称的两个图形的性质:如果两个图形关于某条如果两个图形关于某条直线对称,那么对称轴是任直线对称,那么
15、对称轴是任何一对对应点所连线段的垂何一对对应点所连线段的垂直平分线即对称点所连线直平分线即对称点所连线段被对称轴垂直平分;对称段被对称轴垂直平分;对称轴垂直平分对称点所连线段轴垂直平分对称点所连线段 ABCMNPABC结论:结论:直线直线l l 垂直线段垂直线段AAAA,BBBB,直线直线l l平分线段平分线段AAAA,BBBB或直或直线线l l 是线段是线段AAAA,BBBB的垂直平分的垂直平分线线 探索新知探索新知问题问题4 4以下图是一个轴对称图形,你能发现什么以下图是一个轴对称图形,你能发现什么结结 论?能说明理由吗?论?能说明理由吗?ABlAB追问你能用数学语言概括前面追问你能用数学
16、语言概括前面的结论吗?的结论吗?探索新知探索新知问题问题4 4以下图是一个轴对称图形,你能发现什么以下图是一个轴对称图形,你能发现什么结结论?能说明理由吗?论?能说明理由吗?ABlAB轴对称图形的性质:轴对称图形的性质:轴对称图形的对称轴,是任何轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线一对对应点所连线段的垂直平分线 探索新知探索新知问题问题4 4以下图是一个轴对称图形,你能发现什么以下图是一个轴对称图形,你能发现什么结结 论?能说明理由吗?论?能说明理由吗?ABlAB课堂练习课堂练习练习练习1 1如下图的每个图形是轴对称图形吗?如如下图的每个图形是轴对称图形吗?如果是,指出它的
17、对称轴果是,指出它的对称轴 课堂练习课堂练习练习练习2 2如下图的每幅图形中的两个图案是轴对称如下图的每幅图形中的两个图案是轴对称的吗?如果是,试着找出它们的对称轴,并找出一对对的吗?如果是,试着找出它们的对称轴,并找出一对对称点称点 1 1本节课学习了哪些主要内容?本节课学习了哪些主要内容?2 2轴对称图形和两个图形成轴对称的区别与联系是轴对称图形和两个图形成轴对称的区别与联系是 什么?什么?3 3成轴对称的两个图形有什么性质?轴对称图形有成轴对称的两个图形有什么性质?轴对称图形有 什么性质?我们是怎么探究这些性质的?什么性质?我们是怎么探究这些性质的?课堂小结课堂小结教科书习题教科书习题13.1第第1、2、3、4、5题题 布置作业布置作业