1、人教版八年级数学人教版八年级数学14.1.4 整式的整式的乘法乘法(2) 学案学案学 习学 习目标目标1.探索并理解多项式乘以多项式的法则;2.熟练应用法则计算多项式乘以多项式.复习复习回顾回顾计算:)3)(5() 1 (2aba)2(4)2(2xyy) 13(4)3(2xx)25(3)4(baa创设创设情境情境1.一块长为 a 米、宽为 p 米的长方形绿地面积为平方米.2.现在把长增加 b 米、宽增加 q 米,则扩大后的长方形绿地面积为平方米.思思考考探探究究从整体上看扩大后长方形的面积表示为平方米;你还能用其它式子表示长方形的面积吗?多项式乘以多项式的法则:.(a+b)(p+q)=.例例题
2、题讲讲解解例 计算:法则法则单单:把它们的系数、相同的字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式。单多:用单项式去乘多项式的每一项,再把所得的积相加。22(1)(2 )(2 );(2)()().xy xyxy xxyy);3)(6)(1 (xx)31)(21)(2(xx)2)(23(xx尝尝试试练练习习一一计算:)3)(2)(4(nmnm;)3)(3)(5(baba尝尝试试练练习习二二判断下列计算是否有误?若有误,请更正.()()多项式与多项式相乘时需要注意什么?.观观察察规规律律观察:;.由上面计算的结果找规律,填空:过过关关测测试试1.计算:2.化简求值:
3、课堂课堂小结小结1.多项式乘以多项式的法则是什么?2.在多项式乘以多项式的计算题中易出现什么问题,怎么避免?课后课后作业作业教科书第 105 页习题 14.1 第 5 题.计算:;(3);)5)(14)(4(yy;)4)(2)(5(2xx;)()(6(22yxyxyx22(1)(2)(3);(2)(1) ;(3)(23)(25).xxaxxx(1)(2)(3)(2)(1)(1)(3)(4)(2)xxaayy2()()()()().xp xqx(1)(4)(2);yy2248yyy解:原式(21)(3).xx(3 )(3 )(1),2,1.ab aba aab 其中22(2)(2 )(3).3334xyxyxxyxyxxy 解:原式