1、 第1页(共5页)2021-2022 学年山东省青岛市李沧学年山东省青岛市李沧区区七年级(上)期中数学试卷七年级(上)期中数学试卷 一一.选择题本大题共选择题本大题共 8 小题,其中每小题小题,其中每小题 3 分,共分,共 24 分。在以下每小题的四个选项中,只有分。在以下每小题的四个选项中,只有一个选项是符合题目要求的,请将答案填在题目后面的表格中。一个选项是符合题目要求的,请将答案填在题目后面的表格中。1(3 分)的倒数是()A B C D 2(3 分)下列各组的两个数中,运算后结果相等的是()A23和 32 B33和(3)3 C22和(2)2 D和 3(3 分)下面图形中,不能折成无盖的
2、正方体盒子的是()A B C D 4(3 分)国家主席习近平提出“金山银山,不如绿水青山”,国家环保部大力治理环境污染,空气质量明显好转,将惠及 13.75 亿中国人,这个数字用科学记数法表示为()A13.75106 B13.75105 C1.375108 D1.375109 5(3 分)下面几何体中,截面图形不可能是圆()A圆柱 B圆锥 C球 D正方体 6(3 分)如图,这是一个数值转换机的示意图,若输入 x 的值为3,则输出的结果为()A115 B10 C115 D10 7(3 分)如果|a|3,|b|1,且 ab,那么 a+b 的值是()A4 B2 C4 D4 或 2 8(3 分)如图,
3、用菱形纸片按规律依次拼成如图图案由图知,第 1 个图案中有 5 个菱形纸片;第 2 个图案中有 9 个菱形纸片;第 3 个图形中有 13 个菱形纸片按此规律,第 6个图案中有()个菱形纸片 第2页(共5页)A21 B23 C25 D29 二二.填空题(本大题共填空题(本大题共 8 小题,每小题小题,每小题 3 分,共分,共 24 分分.不需写出解答过程,请把答案直接填不需写出解答过程,请把答案直接填写在横线上)写在横线上)9(3 分)2018 年 2 月 3 日崂山天气预报:多云,19,西北风 3 级,则当天最高气温是比最低气温高 10(3 分)如图是一个正方体的表面展开图,已知正方体的每一个
4、面都有一个实数,且相对面上的两个数互为倒数,则 x 的值为 11(3 分)单项式的系数是 ,次数是 ,多项式 2ab3ab2的次数是 12(3 分)已知|a+2016|+|b2017|0,求(a+b)2017 13(3 分)若代数式 2x2+3x+7 的值是 5,则代数式 4x2+6x+15 的值是 14(3 分)点 A,B 表示数轴上互为相反数的两个数,且点 A 向左平移 8 个单位长度到达点 B,则这两点所表示的数分别是 和 15(3 分)若单项式 3xmny2与单项式 2x2nyn的和是 5xmny2,则 m+n 16(3 分)一个自然数的立方,可以分裂成若干个连续奇数的和例如:23,3
5、3和 43分别可以按如图所示的方式“分裂”成 2 个、3 个和 4 个连续奇数的和,即 233+5;337+9+11;4313+15+17+19;若 63也按照此规律来进行“分裂”,则 63“分裂”出的奇数中,最大的奇数是 三三.作图题(作图题(6 分)分)第3页(共5页)17(6 分)如图,这是由若干个小立方块搭成的几何体,请你画出从正面、左面和上面看到的该几何体的形状图 四、解答题(本大题共四、解答题(本大题共 6 小题,共小题,共 66 分)分)18(6 分)把下列各数分别在数轴上表示出来,并用“”连接起来:,2,0,3,|0.5|,(4)19(16 分)计算题(1)13.7+(7.3)
6、+(25.7)+7.3(2)2(2)(4.5)(3)(32)(+)(4)24+7()()20(17 分)化简题(1)4ab+b27ab2;(2)5(a2b3ab2)2(a2b7ab2);(3)已知:A9x3+16xy2+8y3,B3x34y3+16xy3,求 A2B;(4)2(7a2+9b)+3(5a24b),其中 a1,b 21(6 分)某公司仓库一周内货物进出的吨数记录如下:(“+”表示进库,“”表示出库)日期 星期日 星期一 星期二 星期三 星期四 星期五 星期六 吨数+22 29 15+37 25 21 19(1)若星期日开始时仓库内有货物 465 吨,则星期六结束时仓库内还有货物多少
7、吨?(2)如果该仓库货物进出的装卸费都是每吨 5 元,那么这一周内共需付多少元装卸费?第4页(共5页)22(9 分)在学习了有理数的加减法之后,老师讲解了例题1+23+4+2017+2018的计算思路为:将两个加数组合在一起作为一组;其和为 1,共有 1009 组,所以结果为+1009根据这个思路学生改编了下列几题:(1)计算:12+34+20172018 13+57+20172019 (2)蚂蚁在数轴的原点 O 处,第一次向右爬行 1 个单位,第二次向右爬行 2 个单位,第三次向左爬行 3 个单位,第四次向左爬行 4 个单位,第五次向右爬行 5 个单位,第六次向右爬行 6 个单位,第七次向左
8、爬行 7 个单位按照这个规律,第 1024 次爬行后蚂蚁在数轴什么位置?23(12 分)问题引入:在数轴上,一个数所对应的点与原点的距离叫做这个数的绝对值必然|2|就表示2这个点到原点的距离,所以|2|2;问题探究:点 A、B、C、D 所表示的数如图 1 所示,则 A、C 两点间的距离为 ;B、D 两点间的距离为 ;A、B 两点间的距离为 ;由此,数轴上任意两点 E、F 分别表示的数是 m、n,则E、F 两点间的距离可表示为 问题应用:在一工厂流水线上有依次排列的 n 个工作台,现要在流水线上设置一个工具台,以方便这 n 名工人从工作台到工具台拿取工具为了让工人从工作台到工具台拿工具所走的路程
9、之和最小,我们应该把工具台放在什么位置呢?为了解决这一问题,我们不妨先从最简单的情形入手:(1)如图 2,若流水线上顺次摆放着 2 个工作台 A1和 A2,为让 2 名工人拿工具所走的 第5页(共5页)路程和最小,很明显,工具台 P 设在 A1和 A2之间的任何地方都行(包括 A1和 A2),因为这时 2 个工作台上的工人过来取共计所走的距离和等于 A1和 A2之间的距离,要放在其它位置的话,两人所走的距离和都要大于这个距离(2)如图 3,若流水线上一次摆着 3 个工作台 A1、A2和 A3,为让 3 名工人拿工具所走的路程和最小,应将工具台设在中间工作台 A2处因为这时 3 个工作台上工人过来取工具所走的距离和等于 A1和 A3之间的距离,要放在其它位置的话,两人所走的距离和都要大于这个距离(3)若流水线上一次摆着 4 个工作台 A1、A2、A3和 A4,为让 4 名工人拿工具所有的路程和最小,应将工具台设在 (4)若流水线上一次摆放着 5 个工作台 A1、A2、A3、A4和 A5,为让 5 名工人拿工具所走的路程和最小,应将工具台设在 问题拓展:数轴上三个点 1、2、x,那么 x 在数轴上 位置时才能到 1 和 2 两点的距离和最小,由此,|x1|+|x2|的最小值为 根据以上推理方法可求|x1|+|x2|+|x3|+|x4|+|x5|的最小值是 ,此时 x