1、1.6.2 三角函数的应用(2) 学习目标1、能准确分析收集到的数据,选择恰当的三角函数模型刻画数据所蕴含的规律,来解决实际问题.2、体会生活即数学的意义. 学习过程一、课前准备(预习教材P60 P65,找出疑惑之处)海水受日月的引力,在一定的时候发生涨落的现象叫潮汐,一般的早潮叫潮,晚潮叫汐.在通常情况下,船在涨潮时驶进航区,靠近船坞,卸货后落潮时返回海洋.常用三角函数去模拟相关函数.二、新课导学 探索新知问题1. 观察下表的数据,作出散点图,观察图形,你认为可以用怎样的函数模型来刻画其中的规律?给出了某港口在某季节每天几个时刻的水深:时刻水深(m)时刻水深(m)时刻水深(m)0:005.0
2、9:002.518:005.03:007.512:005.021:002.56:005.015:007.524:005.0问题2. 根据所得的函数模型,求出整点时的水深。问题3一条货船的吃水深度(船底与水面的距离)为4m,安全条例规定至少要有1.5m的安全间隙(船底与海底的距离),该船何时能进入港口?在港口待多久?问题4若船的吃水深度为4m,安全间隙为1.5m,该船在2:00开始卸货,吃水深度以每小时0.3m的速度减少,那么该船在什么时候必须停止卸货,将船驶向较深的水域? 典型例题例1:某港口相邻两次高潮发生时间间隔12h20min,低潮时入口处水的深度为2.8m,高潮时为8.4m,一次高潮发
3、生在10月3日2:00。(1)若从10月3日0:00开始计算时间,选用一个三角函数来近似描述这个港口的水深d(m)和时间t(h)之间的函数关系;(2)求10月5日4:00水的深度;(3)求10月3日吃水深度为5m的轮船能进入港口的时间。例2. 电流I(A)随时间t(s)变化的关系式是,设,A=5。求电流I变化的周期和频率;当时,求电流I。画出电流I(A)随时间t(s)变化的函数图象。 动手试试1、课本第65页练习2、从高出海面hm的小岛A处看正东方向有一只船B,俯角为看正南方向的一船C的俯角为,则此时两船间的距离为( ).A B C D月份123456789101112平均气温-5.9-3.3
4、2.29.315.120.322.822.218.211.94.3-2.4三、小结反思1、用三角函数的图象与性质解决一些简单的实际问题,数学模型的建立很重要,实际的取值范围也必须引起注意.2、数学建模的过程应完整清晰,实际应用问题并不仅仅局限于三角函数中. 学习评价 当堂检测(时量:5分钟 满分:10分)计分:1、一个单摆如右图,摆角(弧度)作为时间(秒)的函数满足.(1)求最初位置的摆角(弧度);(2)求单摆的频率.(3)求多长时间单摆完成5次完整摆动(往复摆动一次称一次完整摆动)?2、大风车叶轮最高顶点离地面14.5米,风车轮直径为14米,车轮以每分钟2周的速度匀速转动.风叶轮顶点从离地面
5、最低点经16秒后到达最高点.假设风叶轮离地面高度(米)与风叶轮离地面最低点开始转的时间(秒)建立一个数学模型,用函数来表示,试求出其中四个参数的值. 课后作业3、下表是某市1975-2005年月平均气温()(1)下列函数模型中最适合这些数据的是 ( )A、 B、C、 D、(2)请再写出一个与上述所选答案等价的模型来描述这些数据.4、如图,某地一天从6时至14时的温度变化曲线近似满足函数(1)求这段时间的最大温差.(2)写出这段曲线的函数解析式高一数学测试题一 选择题:本大题共l0小题,每小题5分,满分50分在每小题给出的四个选项中只有一项是符合题目要求的1设集合x0,B=x|-1x3,则AB=
6、( )A-1,0 B-3,3 C0,3 D-3,-12.下列图像表示函数图像的是( )A B C D3. 函数的定义域为( )A(5,) B5,C(5,0) D (2,0)4. 已知,则的大小关系是( )A B C D 5.函数的实数解落在的区间是( ) 6.已知则线段的垂直平分线的方程是( ) 7. 下列条件中,能判断两个平面平行的是( )A 一个平面内的一条直线平行于另一个平面;B 一个平面内的两条直线平行于另一个平面C 一个平面内有无数条直线平行于另一个平面D 一个平面内任何一条直线都平行于另一个平面 8. 如图,在RtABC中,ABC=90,P为ABC所在平面外一点PA平面ABC,则四
7、面体P-ABC中共有( )个直角三角形。 A 4 B 3 C 2 D 19.如果轴截面为正方形的圆柱的侧面积是,那么圆柱的体积等于() A B C D 10 .在圆上,与直线的距离最小的点的坐标为( ) 二 填空题本大题共4小题,每小题5分,满分20分11.设,则的中点到点的距离为 .12. 如果一个几何体的三视图如右图所示(单位长度:cm), 则此几何体的表面积是 .13.设函数在R上是减函数,则的范围是 .14.已知点到直线距离为,则= .三、解答题:本大题共6小题,满分80分解答须写出文字说明、证明过程和演算步骤15. (本小题满分10分)求经过两条直线和的交点,并且与直线垂直的直线方程
8、(一般式).16. (本小题满分14分)如图,的中点.(1)求证:;(2)求证:; 17. (本小题满分14分)已知函数(14分)(1)求的定义域;(2)判断的奇偶性并证明;18. (本小题满分14分)当,函数为,经过(2,6),当时为,且过(-2,-2),(1)求的解析式;(2)求;(3)作出的图像,标出零点。19. (本小题满分14分)已知圆:,(1)求过点的圆的切线方程;(2)点为圆上任意一点,求的最值。20.(本小题满分14分)某商店经营的消费品进价每件14元,月销售量Q(百件)与销售价格P(元)的关系如下图,每月各种开支2000元,(1) 写出月销售量Q(百件)与销售价格P(元)的函
9、数关系。(2) 该店为了保证职工最低生活费开支3600元,问:商品价格应控制在什么范围?(3) 当商品价格每件为多少元时,月利润并扣除职工最低生活费的余额最大?并求出最大值。答案一选择(每题5分) 1-5 A C A C B 6-10 B D A B C二填空(每题5分) 11. 12. 13. 14. 1或-3三解答题15.(10分) 16.(14分) (1)取1分 为中点, (2)17.(14分)(1)由对数定义有 0,(2分)则有(2)对定义域内的任何一个,1分都有, 则为奇函数4分18.14分(1).6分(2) 3分(3)图略3分. 零点0,-12分19.14分(1)设圆心C,由已知C(2,3) , 1分AC所在直线斜率为, 2分则切线斜率为,1分则切线方程为。 2分(2)可以看成是原点O(0,0)与连线的斜率,则过原点与圆相切的直线的斜率为所求。1分圆心(2,3),半径1,设=k,1分则直线为圆的切线,有,2分解得,2分 所以的最大值为,最小值为 2分20.14分(1) 4分(2)当时,1分即,解得,故; 2分当时, 1分即,解得,故。2分所以(4) 每件19.5元时,余额最大,为450元。4分10