1、2023年湖北省鄂州市梁子湖区涂家垴镇中学中考数学模拟试卷学校:_姓名:_班级:_考号:_一、单选题1实数的相反数等于()ABCD2下列图形中,既是轴对称图形又是中心对称图形的是()ABCD3北京冬奥会开幕式的冰雪五环由我国航天科技建造,该五环由21000个LED灯珠组成,夜色中就像闪闪发光的星星,把北京妆扮成了奥运之城,将数据21000用科学记数法表示为()A21103B2.1104C2.1105D0.211064若函数yax2x+1(a为常数)的图象与x轴只有一个交点,那么a满足()AaBaCa0或aDa0或a5“爱劳动,劳动美”甲、乙两同学同时从家里出发,分别到距家6km和10km的实践
2、基地参加劳动若甲、乙的速度比是,结果甲比乙提前20min到达基地,求甲、乙的速度设甲的速度为3xkm/h,则依题意可列方程为()ABCD6一个扇形的弧长是,其圆心角是150,此扇形的面积为()ABCD7如图,某零件的外径为10cm,用一个交叉卡钳(两条尺长AC和BD相等)可测量零件的内孔直径AB如果OA:OC=OB:OD=3,且量得CD=3cm,则零件的厚度x为()ABCD8七巧板是一种古老的中国传统智力玩具,如图,在正方形纸板ABCD中,BD为对角线,E,F分别为BC,CD的中点,分别交BD,EF于O,P两点,M,N分别为BO,DC的中点,连接AP,NF,沿图中实线剪开即可得到一副七巧板,则
3、在剪开之前,关于该图形,下列说法:图中的三角形都是等腰直角三角形;四边形MPEB是菱形;四边形PFDM的面积占正方形ABCD面积的正确的有()A只有BCD9由4个形状相同,大小相等的菱形组成如图所示的网格,菱形的顶点称为格点,点A,B,C都在格点上,O=60,则tanABC=()ABCD10幻方是古老的数学问题,我国古代的洛书中记载了最早的幻方九宫格将9个数填入幻方的空格中,要求每一横行、每一竖列以及两条对角线上的3个数之和相等,例如图(1)就是一个幻方图(2)是一个未完成的幻方,则与的和是()A9B10C11D12二、填空题11两千多年前战国时期李悝所著的法经中已出现使用负数的实例九章算术的
4、“方程”一章,在世界数学史上首次正式引入负数及其加减法运算法则,并给出名为“正负术”的算法,请计算以下涉及“负数”的式子的值:_12若分式有意义,则的取值范围是_13因式分解 =_14若实数a、b分别满足a24a+30,b24b+30,且ab,则的值为 _15勾股定理最早出现在商高的周髀算经:“勾广三,股修四,经隅五”观察下列勾股数:3,4,5;5,12,13;7,24,25;,这类勾股数的特点是:勾为奇数,弦与股相差为1,柏拉图研究了勾为偶数,弦与股相差为2的一类勾股数,如:6,8,10;8,15,17;,若此类勾股数的勾为2m(m3,m为正整数),则其弦是_(结果用含m的式子表示)16规定
5、:两个函数,的图象关于y轴对称,则称这两个函数互为“Y函数”例如:函数与的图象关于y轴对称,则这两个函数互为“Y函数”若函数(k为常数)的“Y函数”图象与x轴只有一个交点,则其“Y函数”的解析式为_三、解答题17先化简,再求值: ,其中,18为了解我市中学生对疫情防控知识的掌握情况,在全市随机抽取了m名中学生进行了一次测试,随后绘制成如下尚不完整的统计图表;(测试卷满分100分按成绩划分为A,B,C,D四个等级)等级成绩x频数A48BnC32D8根据以上信息,解答下列问题:(1)填空: , , ;抽取的这m名中学生,其成绩的中位数落在 等级(填A,B,C或D);(2)我市约有5万名中学生,若全
6、部参加这次测试,请你估计约有多少名中学生的成绩能达到A等级19如图,中,相交于点,分别是,的中点(1)求证:;(2)设,当为何值时,四边形是矩形?请说明理由20小红同学在数学活动课中测量旗杆的高度,如图,已知测角仪的高度为1.58米,她在A点观测杆顶E的仰角为30,接着朝旗杆方向前进20米到达C处,在D点观测旗杆顶端E的仰角为60,求旗杆的高度(结果保留小数点后一位)(参考数据:)21如图,正方形内接于,点E为的中点,连接交于点F,延长交于点G,连接(1)求证:;(2)若,求和的长22在一条笔直的滑道上有黑、白两个小球同向运动,黑球在处开始减速,此时白球在黑球前面处小聪测量黑球减速后的运动速度
7、(单位:)、运动距离(单位:)随运动时间(单位:)变化的数据,整理得下表运动时间01234运动速度109.598.58运动距离09.751927.7536小聪探究发现,黑球的运动速度与运动时间之间成一次函数关系,运动距离与运动时间之间成二次函数关系(1)直接写出关于的函数解析式和关于的函数解析式(不要求写出自变量的取值范围)(2)当黑球减速后运动距离为时,求它此时的运动速度;(3)若白球一直以的速度匀速运动,问黑球在运动过程中会不会碰到白球?请说明理由23问题背景:一次数学综合实践活动课上,小慧发现并证明了关于三角形角平分线的一个结论如图1,已知AD是ABC的角平分线,可证小慧的证明思路是:如
8、图2,过点C作CEAB,交AD的延长线于点E,构造相似三角形来证明(1)尝试证明:请参照小慧提供的思路,利用图2证明;(2)应用拓展:如图3,在RtABC中,BAC90,D是边BC上一点连接AD,将ACD沿AD所在直线折叠,点C恰好落在边AB上的E点处若AC1,AB2,求DE的长;若BCm,AED,求DE的长(用含m,的式子表示)24已知抛物线与轴交于,两点,与轴交于点直线由直线平移得到,与轴交于点四边形的四个顶点的坐标分别为,(1)填空:_,_;(2)若点在第二象限,直线与经过点的双曲线有且只有一个交点,求的最大值;(3)当直线与四边形、抛物线都有交点时,存在直线,对于同一条直线上的交点,直线与四边形的交点的纵坐标都不大于它与抛物线的交点的纵坐标当时,直接写出的取值范围;求的取值范围试卷第7页,共7页