1、2020年甘肃省张掖市中考数学试题及参考答案与解析(考试时间120分钟,满分120分)一、选择题:本大题共10小题,每小题3分,共30分,每小题只有一个正确选项1下列实数是无理数的是()A2 B C D2若70,则的补角的度数是()A130 B110 C30 D203若一个正方形的面积是12,则它的边长是()A2 B3 C3 D44下列几何体中,其俯视图与主视图完全相同的是()A BC D5下列各式中计算结果为x6的是()Ax2+x4 Bx8x2 Cx2x4 Dx12x26生活中到处可见黄金分割的美如图,在设计人体雕像时,使雕像的腰部以下a与全身b的高度比值接近0.618,可以增加视觉美感若图
2、中b为2米,则a约为()A1.24米 B1.38米 C1.42米 D1.62米7已知x1是一元二次方程(m2)x2+4xm20的一个根,则m的值为()A1或2 B1 C2 D08如图所示的木制活动衣帽架是由三个全等的菱形构成,根据实际需要可以调节AE间的距离若AE间的距离调节到60cm,菱形的边长AB20cm,则DAB的度数是()A90 B100 C120 D1509如图,A是O上一点,BC是直径,AC2,AB4,点D在O上且平分,则DC的长为()A2 B C2 D10如图,正方形ABCD中,AC,BD相交于点O,E是OD的中点动点P从点E出发,沿着EOBA的路径以每秒1个单位长度的速度运动到
3、点A,在此过程中线段AP的长度y随着运动时间x的函数关系如图所示,则AB的长为()A4 B4 C3 D2二、填空题:本大题共8小题,每小题3分,共24分11如果盈利100元记作+100元,那么亏损50元记作 元12分解因式:a2+a 13暑假期间,亮视眼镜店开展学生配镜优惠活动某款式眼镜的广告如下,请你为广告牌填上原价原价: 元暑假八折优惠,现价:160元14要使分式有意义,x需满足的条件是 15在一个不透明的袋中装有若干个材质、大小完全相同的红球,小明在袋中放入3个黑球(每个黑球除颜色外其余都与红球相同),摇匀后每次随机从袋中摸出一个球,记录颜色后放回袋中,通过大量重复摸球试验后发现,摸到红
4、球的频率稳定在0.85左右,估计袋中红球有 个16如图,在平面直角坐标系中,OAB的顶点A,B的坐标分别为(3,),(4,0)把OAB沿x轴向右平移得到CDE,如果点D的坐标为(6,),则点E的坐标为 17若一个扇形的圆心角为60,面积为cm2,则这个扇形的弧长为 cm(结果保留)18已知yx+5,当x分别取1,2,3,2020时,所对应y值的总和是 三、解答题(一):本大题共5小题,共26分解答应写出必要的文字说明,证明过程或演算步骤19(4分)计算:(2)(2+)+tan60(2)020(4分)解不等式组:,并把它的解集在数轴上表示出来21(6分)如图,在ABC中,D是BC边上一点,且BD
5、BA(1)尺规作图(保留作图痕迹,不写作法):作ABC的角平分线交AD于点E;作线段DC的垂直平分线交DC于点F(2)连接EF,直接写出线段EF和AC的数量关系及位置关系22(6分)图是甘肃省博物馆的镇馆之宝铜奔马,又称“马踏飞燕”,于1969年10月出土于武威市的雷台汉墓,1983年10月被国家旅游局确定为中国旅游标志在很多旅游城市的广场上都有“马踏飞燕”雕塑某学习小组把测量本城市广场的“马踏飞燕”雕塑(图)最高点离地面的高度作为一次课题活动,同学们制定了测量方案,并完成了实地测量,测得结果如下表:课题测量“马踏飞燕“雕塑最高点离地面的高度测量示意图如图,雕塑的最高点B到地面的高度为BA,在
6、测点C用仪器测得点B的仰角为,前进一段距离到达测点E,再用该仪器测得点B的仰角为,且点A,B,C,D,E,F均在同一竖直平面内,点A,C,E在同一条直线上测量数据的度数的度数CE的长度仪器CD(EF)的高度31425米1.5米请你根据上表中的测量数据,帮助该小组求出“马踏飞燕”雕塑最高点离地面的高度(结果保留一位小数)(参考数据:sin310.52,cos310.86,tan310.60,sin420.67,cos420.74,tan420.90)23(6分)2019年甘肃在国际知名旅游指南孤独星球亚洲最佳旅游地排名第一截至2020年1月,甘肃省已有五家国家5A级旅游景区,分别为A:嘉峪关文物
7、景区;B:平凉崆峒山风景名胜区;C:天水麦积山景区;D:敦煌鸣沙山月牙泉景区;E:张掖七彩丹霞景区张帆同学与父母计划在暑假期间从中选择部分景区游玩(1)张帆一家选择E:张掖七彩丹霞景区的概率是多少?(2)若张帆一家选择了E:张掖七彩丹霞景区,他们再从A,B,C,D四个景区中任选两个景区去旅游,求选择A,D两个景区的概率(要求画树状图或列表求概率)四、解答题(二):本大题共5小题,共40分解答应写出必要的文字说明,证明过程或演算步骤24(7分)习近平总书记于2019年8月在兰州考察时说“黄河之滨也很美”兰州是古丝绸之路商贸重镇,也是黄河唯一穿城而过的省会城市,被称为“黄河之都”近年来,在市政府的
8、积极治理下,兰州的空气质量得到极大改善,“兰州蓝”成为兰州市民引以为豪的城市名片如图是根据兰州市环境保护局公布的20132019年各年的全年空气质量优良天数绘制的折线统计图请结合统计图解答下列问题:(1)2019年比2013年的全年空气质量优良天数增加了 天;(2)这七年的全年空气质量优良天数的中位数是 天;(3)求这七年的全年空气质量优良天数的平均天数;(4)兰州市“十三五”质量发展规划中指出:2020年,确保兰州市全年空气质量优良天数比率达80%以上试计算2020年(共366天)兰州市空气质量优良天数至少需要多少天才能达标25(7分)通过课本上对函数的学习,我们积累了一定的经验下表是一个函
9、数的自变量x与函数值y的部分对应值,请你借鉴以往学习函数的经验,探究下列问题:x012345y6321.51.21(1)当x 时,y1.5;(2)根据表中数值描点(x,y),并画出函数图象;(3)观察画出的图象,写出这个函数的一条性质: 26(8分)如图,O是ABC的外接圆,其切线AE与直径BD的延长线相交于点E,且AEAB(1)求ACB的度数;(2)若DE2,求O的半径27(8分)如图,点M,N分别在正方形ABCD的边BC,CD上,且MAN45把ADN绕点A顺时针旋转90得到ABE(1)求证:AEMANM(2)若BM3,DN2,求正方形ABCD的边长28(10分)如图,在平面直角坐标系中,抛
10、物线yax2+bx2交x轴于A,B两点,交y轴于点C,且OA2OC8OB点P是第三象限内抛物线上的一动点(1)求此抛物线的表达式;(2)若PCAB,求点P的坐标;(3)连接AC,求PAC面积的最大值及此时点P的坐标参考答案与解析一、选择题:本大题共10小题,每小题3分,共30分,每小题只有一个正确选项1下列实数是无理数的是()A2 B C D【知识考点】算术平方根;无理数【思路分析】根据无理数的定义(无理数是指无限不循环小数)逐个判断即可【解题过程】解:3,则由无理数的定义可知,属于无理数的是故选:D【总结归纳】本题考查了无理数,能熟记无理数的定义是解此题的关键,注意:无理数含有含的,开方开不
11、尽的根式,一些有规律的数2若70,则的补角的度数是()A130 B110 C30 D20【知识考点】余角和补角【思路分析】根据补角的定义,两个角的和是180即可求解【解题过程】解:的补角是:180A18070110故选:B【总结归纳】本题考查了补角的定义,理解定义是关键3若一个正方形的面积是12,则它的边长是()A2 B3 C3 D4【知识考点】算术平方根【思路分析】根据算术平方根的定义解答【解题过程】解:正方形的面积是12,它的边长是2故选:A【总结归纳】本题考查了算术平方根,解题的关键是利用了正方形的性质和算术平方根的定义4下列几何体中,其俯视图与主视图完全相同的是()A BC D【知识考
12、点】简单几何体的三视图【思路分析】根据圆锥、圆柱、正方体、三棱柱的主视图、俯视图矩形判断即可【解题过程】解:圆锥的主视图是等腰三角形,俯视图是圆,因此A不符合题意;圆柱的主视图是矩形,俯视图是圆,因此B不符合题意;正方体的主视图、俯视图都是正方形,因此选项C符合题意;三棱柱的主视图是矩形,俯视图是三角形,因此D不符合题意;故选:C【总结归纳】本题考查简单几何体的三视图,理解三视图的意义,明确各种几何体的三视图的形状是正确判断的前提5下列各式中计算结果为x6的是()Ax2+x4 Bx8x2 Cx2x4 Dx12x2【知识考点】合并同类项;同底数幂的乘法;同底数幂的除法【思路分析】根据合并同类项、
13、同底数幂乘除法的性质进行计算即可【解题过程】解:x2与x4不是同类项,不能合并计算,它是一个多项式,因此A选项不符合题意;同理选项B不符合题意;x2x4x2+4x6,因此选项C符合题意;x12x2x122x10,因此选项D不符合题意;故选:C【总结归纳】本题考查同底数幂的乘除法的计算法则,同类项、合并同类项的法则,掌握运算性质是正确计算的前提6生活中到处可见黄金分割的美如图,在设计人体雕像时,使雕像的腰部以下a与全身b的高度比值接近0.618,可以增加视觉美感若图中b为2米,则a约为()A1.24米 B1.38米 C1.42米 D1.62米【知识考点】黄金分割【思路分析】根据雕像的腰部以下a与
14、全身b的高度比值接近0.618,因为图中b为2米,即可求出a的值【解题过程】解:雕像的腰部以下a与全身b的高度比值接近0.618,0.618,b为2米,a约为1.24米故选:A【总结归纳】本题考查了黄金分割,解决本题的关键是掌握黄金分割定义7已知x1是一元二次方程(m2)x2+4xm20的一个根,则m的值为()A1或2 B1 C2 D0【知识考点】一元二次方程的定义;一元二次方程的解【思路分析】首先把x1代入(m2)x2+4xm20解方程可得m12,m21,再结合一元二次方程定义可得m的值【解题过程】解:把x1代入(m2)x2+4xm20得:m2+4m20,m2+m+20,解得:m12,m21
15、,(m2)x2+4xm20是一元二次方程,m20,m2,m1,故选:B【总结归纳】此题主要考查了一元二次方程的解和定义,关键是注意方程二次项的系数不等于08如图所示的木制活动衣帽架是由三个全等的菱形构成,根据实际需要可以调节AE间的距离若AE间的距离调节到60cm,菱形的边长AB20cm,则DAB的度数是()A90 B100 C120 D150【知识考点】全等图形;菱形的性质;解直角三角形的应用【思路分析】连结AE,根据全等的性质可得AC20cm,根据菱形的性质和等边三角形的判定可得ACB是等边三角形,再根据等边三角形和菱形的性质即可求解【解题过程】解:连结AE,AE间的距离调节到60cm,木
16、制活动衣帽架是由三个全等的菱形构成,AC20cm,菱形的边长AB20cm,ABBC20cm,ACABBC,ABC是等边三角形,B60,DAB120故选:C【总结归纳】考查了菱形的性质,全等图形,等边三角形的判定与性质,解题的关键是得到ACB是等边三角形9如图,A是O上一点,BC是直径,AC2,AB4,点D在O上且平分,则DC的长为()A2 B C2 D【知识考点】圆周角定理【思路分析】先根据圆周角得:BACD90,根据勾股定理即可得结论【解题过程】解:点D在O上且平分,BC是O的直径,BACD90,AC2,AB4,BC2,点D在O上,且平分,DCBDRtBDC中,DC2+BD2BC2,2DC2
17、20,DC,故选:D【总结归纳】本题考查圆周角定理,勾股定理等知识,解题的关键是灵活运用所学知识解决问题,学会利用勾股定理求线段的长,属于中考常考题型10如图,正方形ABCD中,AC,BD相交于点O,E是OD的中点动点P从点E出发,沿着EOBA的路径以每秒1个单位长度的速度运动到点A,在此过程中线段AP的长度y随着运动时间x的函数关系如图所示,则AB的长为()A4 B4 C3 D2【知识考点】动点问题的函数图象【思路分析】连接AE,由题意DEOE,设DEOEx,则OAOD2x,AE2,在RtAEO中,利用勾股定理构建方程即可解决问题【解题过程】解:如图,连接AE四边形ABCD是正方形,ACBD
18、,OAOCODOB,由题意DEOE,设DEOEx,则OAOD2x,AE2,x2+(2x)2(2)2,解得x2或2(不合题意舍弃),OAOD4,ABAD4,故选:A【总结归纳】本题考查动点问题,正方形的性质,解直角三角形等知识,解题的关键是理解题意读懂图象信息,属于中考常考题型二、填空题:本大题共8小题,每小题3分,共24分11如果盈利100元记作+100元,那么亏损50元记作 元【知识考点】正数和负数【思路分析】根据盈利为正,亏损为负,可以将亏损50元表示出来,本题得以解决【解题过程】解:盈利100元记作+100元,亏损50元记作50元,故答案为:50【总结归纳】本题考查正数和负数,解答本题的
19、关键是明确正负数在题目中的实际意义12分解因式:a2+a 【知识考点】因式分解提公因式法【思路分析】直接提取公因式分解因式得出即可【解题过程】解:a2+aa(a+1)故答案为:a(a+1)【总结归纳】此题主要考查了提取公因式法分解因式,正确得出公因式是解题关键13暑假期间,亮视眼镜店开展学生配镜优惠活动某款式眼镜的广告如下,请你为广告牌填上原价原价: 元暑假八折优惠,现价:160元【知识考点】一元一次方程的应用【思路分析】设广告牌上的原价为x元,根据现价原价折扣率,即可得出关于x的一元一次方程,解之即可得出结论【解题过程】解:设广告牌上的原价为x元,依题意,得:0.8x160,解得:x200故
20、答案为:200【总结归纳】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键14要使分式有意义,x需满足的条件是 【知识考点】分式有意义的条件【思路分析】当分式的分母不为零时,分式有意义,即x10【解题过程】解:当x10时,分式有意义,x1,故答案为x1【总结归纳】本题考查分式有意义的条件;熟练掌握分式分母不为零时,分式有意义是解题的关键15在一个不透明的袋中装有若干个材质、大小完全相同的红球,小明在袋中放入3个黑球(每个黑球除颜色外其余都与红球相同),摇匀后每次随机从袋中摸出一个球,记录颜色后放回袋中,通过大量重复摸球试验后发现,摸到红球的频率稳定在0.85左右,估
21、计袋中红球有 个【知识考点】利用频率估计概率【思路分析】根据口袋中有3个黑球,利用小球在总数中所占比例得出与试验比例应该相等求出即可【解题过程】解:通过大量重复摸球试验后发现,摸到红球的频率稳定在0.85左右,口袋中有3个黑球,假设有x个红球,0.85,解得:x17,经检验x17是分式方程的解,口袋中红球约有17个故答案为:1716如图,在平面直角坐标系中,OAB的顶点A,B的坐标分别为(3,),(4,0)把OAB沿x轴向右平移得到CDE,如果点D的坐标为(6,),则点E的坐标为 【知识考点】坐标与图形变化平移【思路分析】利用平移的性质解决问题即可【解题过程】解:A(3,),D(6,),点A向
22、右平移3个单位得到D,B(4,0),点B向右平移3个单位得到E(7,0),故答案为(7,0)17若一个扇形的圆心角为60,面积为cm2,则这个扇形的弧长为 cm(结果保留)【知识考点】弧长的计算;扇形面积的计算【思路分析】首先根据扇形的面积公式求出扇形的半径,再根据扇形的面积lR,即可得出弧长【解题过程】解:设扇形的半径为R,弧长为l,根据扇形面积公式得;,解得:R1,扇形的面积lR,解得:l故答案为:18已知yx+5,当x分别取1,2,3,2020时,所对应y值的总和是 【知识考点】规律型:数字的变化类;二次根式的性质与化简【思路分析】直接把已知数据代入进而得出变化规律即可得出答案【解题过程
23、】解:当x4时,原式4xx+52x+9,当x1时,原式7;当x2时,原式5;当x3时,原式3;当x4时,原式x4x+51,当x分别取1,2,3,2020时,所对应y值的总和是:7+5+3+1+1+115+120172032故答案为:2032三、解答题(一):本大题共5小题,共26分解答应写出必要的文字说明,证明过程或演算步骤19(4分)计算:(2)(2+)+tan60(2)0【知识考点】平方差公式;零指数幂;二次根式的混合运算;特殊角的三角函数值【思路分析】直接利用乘法公式以及特殊角的三角函数值、零指数幂的性质分别化简得出答案【解题过程】解:原式43+120(4分)解不等式组:,并把它的解集在
24、数轴上表示出来【知识考点】在数轴上表示不等式的解集;解一元一次不等式组【思路分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解,确定不等式组的解集【解题过程】解:解不等式3x5x+1,得:x3,解不等式2(2x1)3x4,得:x2,则不等式组的解集为2x3,将不等式组的解集表示在数轴上如下:21(6分)如图,在ABC中,D是BC边上一点,且BDBA(1)尺规作图(保留作图痕迹,不写作法):作ABC的角平分线交AD于点E;作线段DC的垂直平分线交DC于点F(2)连接EF,直接写出线段EF和AC的数量关系及位置关系【知识考点】线段垂直平分线的性质;作图复杂
25、作图【思路分析】(1)根据尺规作基本图形的方法:作ABC的角平分线交AD于点E即可;作线段DC的垂直平分线交DC于点F即可(2)连接EF,根据等腰三角形的性质和三角形中位线定理,即可写出线段EF和AC的数量关系及位置关系【解题过程】解:(1)如图,BE即为所求;如图,线段DC的垂直平分线交DC于点F(2)BDBA,BE平分ABD,点E是AD的中点,点F是CD的中点,EF是ADC的中位线,线段EF和AC的数量关系为:EFAC,位置关系为:EFAC22(6分)图是甘肃省博物馆的镇馆之宝铜奔马,又称“马踏飞燕”,于1969年10月出土于武威市的雷台汉墓,1983年10月被国家旅游局确定为中国旅游标志
26、在很多旅游城市的广场上都有“马踏飞燕”雕塑某学习小组把测量本城市广场的“马踏飞燕”雕塑(图)最高点离地面的高度作为一次课题活动,同学们制定了测量方案,并完成了实地测量,测得结果如下表:课题测量“马踏飞燕“雕塑最高点离地面的高度测量示意图如图,雕塑的最高点B到地面的高度为BA,在测点C用仪器测得点B的仰角为,前进一段距离到达测点E,再用该仪器测得点B的仰角为,且点A,B,C,D,E,F均在同一竖直平面内,点A,C,E在同一条直线上测量数据的度数的度数CE的长度仪器CD(EF)的高度31425米1.5米请你根据上表中的测量数据,帮助该小组求出“马踏飞燕”雕塑最高点离地面的高度(结果保留一位小数)(
27、参考数据:sin310.52,cos310.86,tan310.60,sin420.67,cos420.74,tan420.90)【知识考点】解直角三角形的应用仰角俯角问题【思路分析】在两个直角三角形中,用BG表示DG、FG,进而用 DGFGDF5列方程求出BG即可【解题过程】解:如图,延长DF与AB交于点G,设BGx米,在RtBFG中,FG,在RtBDG中,DG,由DGFGDF得,5,解得,x9,ABAG+BG1.5+910.5(米),答:这座“马踏飞燕”雕塑最高点离地面的高度为10.5米23(6分)2019年甘肃在国际知名旅游指南孤独星球亚洲最佳旅游地排名第一截至2020年1月,甘肃省已有
28、五家国家5A级旅游景区,分别为A:嘉峪关文物景区;B:平凉崆峒山风景名胜区;C:天水麦积山景区;D:敦煌鸣沙山月牙泉景区;E:张掖七彩丹霞景区张帆同学与父母计划在暑假期间从中选择部分景区游玩(1)张帆一家选择E:张掖七彩丹霞景区的概率是多少?(2)若张帆一家选择了E:张掖七彩丹霞景区,他们再从A,B,C,D四个景区中任选两个景区去旅游,求选择A,D两个景区的概率(要求画树状图或列表求概率)【知识考点】概率公式;列表法与树状图法【思路分析】(1)共有5种可能选择的结果,因此张帆一家选择“E:张掖七彩丹霞景区”只有1种,因此可求出概率;(2)列表法表示所有可能出现的结果,进而求出概率【解题过程】解
29、:(1)共有5种可能选择的结果,因此张帆一家选择“E:张掖七彩丹霞景区”的概率是;(2)从A,B,C,D四个景区中任选两个景区所有可能出现的结果如下:共有12种可能出现的结果,其中选择A、D两个景区的有2种,P(选择A、D)四、解答题(二):本大题共5小题,共40分解答应写出必要的文字说明,证明过程或演算步骤24(7分)习近平总书记于2019年8月在兰州考察时说“黄河之滨也很美”兰州是古丝绸之路商贸重镇,也是黄河唯一穿城而过的省会城市,被称为“黄河之都”近年来,在市政府的积极治理下,兰州的空气质量得到极大改善,“兰州蓝”成为兰州市民引以为豪的城市名片如图是根据兰州市环境保护局公布的201320
30、19年各年的全年空气质量优良天数绘制的折线统计图请结合统计图解答下列问题:(1)2019年比2013年的全年空气质量优良天数增加了 天;(2)这七年的全年空气质量优良天数的中位数是 天;(3)求这七年的全年空气质量优良天数的平均天数;(4)兰州市“十三五”质量发展规划中指出:2020年,确保兰州市全年空气质量优良天数比率达80%以上试计算2020年(共366天)兰州市空气质量优良天数至少需要多少天才能达标【知识考点】折线统计图;加权平均数;中位数【思路分析】(1)根据折线统计图可得2019年比2013年的全年空气质量优良天数增加的天数;(2)先将这七年的全年空气质量优良天数从小到大排列,即可得
31、中位数;(3)根据表格数据利用加权平均数公式即可求这七年的全年空气质量优良天数的平均天数;(4)用80%366即可得兰州市空气质量能达标的优良天数【解题过程】解:(1)29627026,2019年比2013年的全年空气质量优良天数增加了26天;故答案为:26;(2)这七年的全年空气质量优良天数分别为:213,233,250,254,270,296,313,这七年的全年空气质量优良天数的中位数是254天;故答案为:254;(3)(213+233+250+254+270+296+313)261(天),则这七年的全年空气质量优良天数的平均天数为261天;(4)全年空气质量优良天数比率达80%以上36
32、680%292.8293(天),则兰州市空气质量优良天数至少需要293天才能达标25(7分)通过课本上对函数的学习,我们积累了一定的经验下表是一个函数的自变量x与函数值y的部分对应值,请你借鉴以往学习函数的经验,探究下列问题:x012345y6321.51.21(1)当x 时,y1.5;(2)根据表中数值描点(x,y),并画出函数图象;(3)观察画出的图象,写出这个函数的一条性质: 【知识考点】函数值;函数的图象;函数的表示方法【思路分析】(1)观察函数的自变量x与函数值y的部分对应值表可得当x3时,y1.5;(2)根据表中数值描点(x,y),即可画出函数图象;(3)观察画出的图象,即可写出这
33、个函数的一条性质【解题过程】解:(1)当x3时,y1.5;故答案为:3;(2)函数图象如图所示:(3)观察画出的图象,这个函数的一条性质:函数值y随x的增大而减小故答案为:函数值y随x的增大而减小26(8分)如图,O是ABC的外接圆,其切线AE与直径BD的延长线相交于点E,且AEAB(1)求ACB的度数;(2)若DE2,求O的半径【知识考点】三角形的外接圆与外心;切线的性质【思路分析】(1)连接OA,先由切线的性质得OAE的度数,再由等腰三角形的性质得OABABEE,再由三角形内角和定理求得OAB,进而得AOB,最后由圆周角定理得ACB的度数;(2)设O的半径为r,再根据含30解的直角三角形的
34、性质列出r的方程求解便可【解题过程】解:(1)连接OA,AE是O的切线,OAE90,ABAE,ABEAEB,OAOB,ABOOAB,OABABEE,OAB+ABE+E+OAE180,OABABEE30,AOB180OABABO120,ACBAOB60;(2)设O的半径为r,则OAODr,OEr+2,OAE90,E30,2OAOE,即2rr+2,r2,故O的半径为227(8分)如图,点M,N分别在正方形ABCD的边BC,CD上,且MAN45把ADN绕点A顺时针旋转90得到ABE(1)求证:AEMANM(2)若BM3,DN2,求正方形ABCD的边长【知识考点】全等三角形的判定与性质;正方形的性质;
35、旋转的性质【思路分析】(1)想办法证明MAEMAN45,根据SAS证明三角形全等即可(2)设CDBCx,则CMx3,CNx2,在RtMCN中,利用勾股定理构建方程即可解决问题【解题过程】(1)证明:由旋转的性质得,ADNABE,DANBAE,AEAN,DAB90,MAN45,MAEBAE+BAMDAN+BAM45,MAEMAN,MAMA,AEMANM(SAS)(2)解:设CDBCx,则CMx3,CNx2,AEMANM,EMMN,BEDN,MNBM+DN5,C90,MN2CM2+CN2,25(x2)2+(x3)2,解得,x6或1(舍弃),正方形ABCD的边长为628(10分)如图,在平面直角坐标
36、系中,抛物线yax2+bx2交x轴于A,B两点,交y轴于点C,且OA2OC8OB点P是第三象限内抛物线上的一动点(1)求此抛物线的表达式;(2)若PCAB,求点P的坐标;(3)连接AC,求PAC面积的最大值及此时点P的坐标【知识考点】二次函数综合题【思路分析】(1)抛物线yax2+bx2,则c2,故OC2,而OA2OC8OB,则OA4,OB,确定点A、B、C的坐标;即可求解;(2)抛物线的对称轴为x,当PCAB时,点P、C的纵坐标相同,即可求解;(3)PAC的面积SSPHA+SPHCPHOA,即可求解【解题过程】解:(1)抛物线yax2+bx2,则c2,故OC2,而OA2OC8OB,则OA4,OB,故点A、B、C的坐标分别为(4,0)、(,0)、(0,2);则ya(x+4)(x)a(x2+x2)ax2+bx2,故a1,故抛物线的表达式为:yx2+x2;(2)抛物线的对称轴为x,当PCAB时,点P、C的纵坐标相同,根据函数的对称性得点P(,2);(3)过点P作PHy轴交AC于点H,设P(x,x2+2),由点A、C的坐标得,直线AC的表达式为:yx2,则PAC的面积SSPHA+SPHCPHOA4(x2x2x+2)2(x+2)2+8,20,S有最大值,当x2时,S的最大值为8,此时点P(2,5)