山东省威海市文登市七年级(上)期末数学试卷(五四学制)(解析版)(DOC 17页).doc

上传人(卖家):2023DOC 文档编号:5595738 上传时间:2023-04-26 格式:DOC 页数:17 大小:185.50KB
下载 相关 举报
山东省威海市文登市七年级(上)期末数学试卷(五四学制)(解析版)(DOC 17页).doc_第1页
第1页 / 共17页
山东省威海市文登市七年级(上)期末数学试卷(五四学制)(解析版)(DOC 17页).doc_第2页
第2页 / 共17页
山东省威海市文登市七年级(上)期末数学试卷(五四学制)(解析版)(DOC 17页).doc_第3页
第3页 / 共17页
山东省威海市文登市七年级(上)期末数学试卷(五四学制)(解析版)(DOC 17页).doc_第4页
第4页 / 共17页
山东省威海市文登市七年级(上)期末数学试卷(五四学制)(解析版)(DOC 17页).doc_第5页
第5页 / 共17页
点击查看更多>>
资源描述

1、2019-2019学年山东省威海市文登市七年级(上)期末数学试卷(五四学制)一、选择题(本大题共12小题,每小题3分,共36分.下列各题所给出的四个选项中,只有一个是正确的,每小题选对得3分,选错、不选或多选,均不得分)1下列图形中,是轴对称图形的个数是()A1个B2个C3个D4个2如果一个三角形的两边长分别为2和4,则第三边长可能是()A2B4C6D83若=3,则a的值为()A3B3CD34下列各组数,互为相反数的是()A2与B|与C2与()2D2与5将ABC各顶点的横坐标都乘以1,纵坐标不变,顺次连接这三个点,得到另一个三角形,下列选项正确的是()ABCD6若点A(x1,y1)和B(x2,

2、y2)是直线y=x+1上的两点,且x1x2,则y1与y2的大小关系是()Ay1y2By1=y2Cy1y2D不能确定7ABC的三边分别为a、b、c,其对角分别为A、B、C下列条件不能判定ABC是直角三角形的是()AB=ACBa:b:c=5:12:13Cb2a2=c2DA:B:C=3:4:58如图,在ABC中,DE是AC的垂直平分线,ABC的周长为19 cm,ABD的周长为13 cm,则AE的长为()A3 cmB6 cmC12 cmD16 cm9如图,盒内长、宽、高分别是6cm、3cm、2cm,盒内可放木棒最长的长度是()A6cmB7cmC8cmD9cm10已知A,B两点的坐标是A(5,a),B(

3、b,4),若AB平行于x轴,且AB=3,则a+b的值为()A1B9C12D6或1211如图,ABC中,点D是边AB上一点,点E是边AC的中点,过点C作CFAB与DE的延长线相交于点F下列结论不一定成立的是()ADE=EFBAD=CFCDF=ACDA=ACF12A,B两地相距80km,甲、乙两人骑车分别从A,B两地同时相向而行,他们都保持匀速行驶如图,l1,l2分别表示甲、乙两人离B地的距离y(km)与骑车时间x(h)的函数关系根据图象得出的下列结论,正确的个数是()甲骑车速度为30km/小时,乙的速度为20km/小时;l1的函数表达式为y=8030x;l2的函数表达式为y=20x;小时后两人相

4、遇A1个B2个C3个D4个二、填空题(本大题共6小题,每小题3分,共18分。只要求填出最后结果)13的平方根是 14如果点P在第四象限内,点P到x轴的距离是4,到y轴的距离是3,那么点P的坐标为 15如图,已知ABCDEF,A=50,ACB=30,则E= 16把直线y=2x1向上平移三个单位,则平移后直线与x轴的交点坐标是 17如图,有一块直角三角形纸片,两直角边AC=12,BC=16,现将直角边AC沿AD折叠,使它落在斜边AB上,且与AE重合,则ADB的面积为 18已知一次函数y=kx+2(k0)与两坐标轴围成的三角形面积为2,则一次函数的表达式为 三、解答题(本大题共7小题,共66分)19

5、(9分)计算:(1);(2)+|3|+(2)0;(3)已知2x+1的平方根是3,3x+y2的立方根是3,求xy的平方根20(7分)尺规作图:(不要求写作法,只保留作图痕迹)如图,工厂A和工厂B,位于两条公路OC、OD之间的地带,现要建一座货物中转站P若要求中转站P到两条公路OC、OD的距离相等,且到工厂A和工厂B的距离之和最短,请用尺规作出P的位置21(8分)如图,某港口P位于东西方向的海岸线上,A、B两艘轮船同时从港口P出发,各自沿一固定方向航行,A轮船每小时航行12海里,B轮船每小时航行16海里它们离开港口一个半小时后分别位于点R、Q处,且相距30海里已知B轮船沿北偏东60方向航行(1)A

6、轮船沿哪个方向航行?请说明理由;(2)请求出此时A轮船到海岸线的距离22(10分)(1)点P的坐标为(x,y),若x=y,则点P在坐标平面内的位置是 ;若x+y=0,则点P在坐标平面内的位置是 ;(2)已知点Q的坐标为(22a,a+8),且点Q到两坐标轴的距离相等,求点Q的坐标23(10分)如图,E、F分别是等边三角形ABC的边AB,AC上的点,且BE=AF,CE、BF交于点P(1)求证:CE=BF;(2)求BPC的度数24(10分)如图,点A的坐标为(,0),点B的坐标为(0,3)(1)求过A,B两点直线的函数表达式;(2)过B点作直线BP与x轴交于点P,且使OP=2OA,求ABP的面积25

7、(12分)如图,在ABC中,BAC=90,BE平分ABC,AMBC于点M,交BE于点G,AD平分MAC,交BC于点D,交BE于点F(1)判断直线BE与线段AD之间的关系,并说明理由;(2)若C=30,图中是否存在等边三角形?若存在,请写出来并证明;若不存在,请说明理由2019-2019学年山东省威海市文登市七年级(上)期末数学试卷(五四学制)参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分.下列各题所给出的四个选项中,只有一个是正确的,每小题选对得3分,选错、不选或多选,均不得分)1下列图形中,是轴对称图形的个数是()A1个B2个C3个D4个【分析】根据轴对称图形的概念:如

8、果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析【解答】解:第一个不是轴对称图形;第二个是轴对称图形;第三个是轴对称图形;第四个是轴对称图形;故是轴对称图形的个数是3个故选:C【点评】此题主要考查了轴对称图形,判断轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合2如果一个三角形的两边长分别为2和4,则第三边长可能是()A2B4C6D8【分析】已知三角形的两边长分别为2和4,根据在三角形中任意两边之和第三边,任意两边之差第三边;即可求第三边长的范围【解答】解:设第三边长为x,则由三角形三边关系定理得42x4+2,即2x6因此,本

9、题的第三边应满足2x6,把各项代入不等式符合的即为答案2,6,8都不符合不等式2x6,只有4符合不等式故选:B【点评】本题考查了三角形三边关系,此题实际上就是根据三角形三边关系定理列出不等式,然后解不等式即可3若=3,则a的值为()A3B3CD3【分析】直接利用算术平方根的定义计算得出答案【解答】解: =3,a=3故选:B【点评】此题主要考查了算术平方根,正确把握定义是解题关键4下列各组数,互为相反数的是()A2与B|与C2与()2D2与【分析】利用相反数定义判断即可【解答】解:2与()2互为相反数,故选:C【点评】此题考查了实数的性质,相反数,绝对值,以及平方根、立方根,熟练掌握各自的性质是

10、解本题的关键5将ABC各顶点的横坐标都乘以1,纵坐标不变,顺次连接这三个点,得到另一个三角形,下列选项正确的是()ABCD【分析】根据将ABC各顶点的横坐标都乘以1,纵坐标不变,可得出对应点关于y轴对称,进而得出答案【解答】解:将ABC各顶点的横坐标都乘以1,纵坐标不变,顺次连接这三个点,得到另一个三角形,对应点的坐标关于y轴对称,只有选项A符合题意故选:A【点评】此题主要考查了关于y轴对称点的性质,正确记忆横纵坐标变化与坐标轴的关系是解题关键6若点A(x1,y1)和B(x2,y2)是直线y=x+1上的两点,且x1x2,则y1与y2的大小关系是()Ay1y2By1=y2Cy1y2D不能确定【分

11、析】根据k=0,y将随x的增大而减小,然后根据一次函数的性质得出y1与y2的大小关系【解答】解:k=0,y将随x的增大而减小,x1x2,y1y2故选:A【点评】此题考查了正比例函数的增减性,根据k的取值判断出函数的增减性是解题的关键7ABC的三边分别为a、b、c,其对角分别为A、B、C下列条件不能判定ABC是直角三角形的是()AB=ACBa:b:c=5:12:13Cb2a2=c2DA:B:C=3:4:5【分析】根据三角形内角和定理判断A、D即可;根据勾股定理的逆定理判断B、C即可【解答】解:A、B=AC,B+C=A,A+B+C=180,2A=180,A=90,即ABC是直角三角形,故本选项错误

12、;B、52+122=132,ABC是直角三角形,故本选项错误;C、b2a2=c2,b2=a2+c2,ABC是直角三角形,故本选项错误;D、A:B:C=3:4:5,A+B+C=180,A=45,B=60,C=75,ABC不是直角三角形,故本选项正确;故选:D【点评】本题考查了三角形内角和定理,勾股定理的逆定理的应用,主要考查学生的计算能力和辨析能力8如图,在ABC中,DE是AC的垂直平分线,ABC的周长为19 cm,ABD的周长为13 cm,则AE的长为()A3 cmB6 cmC12 cmD16 cm【分析】根据线段的垂直平分线的性质得到DA=DC,根据三角形的周长公式计算即可【解答】解:DE是

13、AC的垂直平分线,DA=DC,ABC的周长为19 cm,ABD的周长为13 cm,AB+BC+AC=19cm,AB+BD+AD=AB+BC+DC=AB+BC=13 cm,AC=6cm,DE是AC的垂直平分线,AE=AC=3cm,故选:A【点评】此题主要考查线段的垂直平分线的性质,线段的垂直平分线上的点到线段的两个端点的距离相等9如图,盒内长、宽、高分别是6cm、3cm、2cm,盒内可放木棒最长的长度是()A6cmB7cmC8cmD9cm【分析】两次运用勾股定理:两直角边的平方和等于斜边的平方即可解决【解答】解:本题需先求出长和宽组成的长方形的对角线长为=3cm这根最长的棍子和矩形的高,以及长和

14、宽组成的长方形的对角线组成了直角三角形盒内可放木棒最长的长度是=7cm故选:B【点评】考查了勾股定理的应用,本题需注意的知识点为:最长的棍子和矩形的高,以及长和宽组成的长方形的对角线长组成了直角三角形10已知A,B两点的坐标是A(5,a),B(b,4),若AB平行于x轴,且AB=3,则a+b的值为()A1B9C12D6或12【分析】根据平行于x轴的直线上的点的纵坐标相等求出a的值,再根据A、B为不同的两点确定b的值【解答】解:ABx轴,a=4,AB=3,b=5+3=8或b=53=2则a+b=4+8=12,或a+b=2+4=6,故选:D【点评】本题考查了坐标与图形性质,是基础题,主要利用了平行于

15、x轴的直线上的点的纵坐标相等,需熟记11如图,ABC中,点D是边AB上一点,点E是边AC的中点,过点C作CFAB与DE的延长线相交于点F下列结论不一定成立的是()ADE=EFBAD=CFCDF=ACDA=ACF【分析】根据平行线性质得出1=F,2=A,求出AE=EC,根据AAS证ADECFE,根据全等三角形的性质推出即可【解答】解:CFAB,1=F,2=A,点E为AC的中点,AE=EC,在ADE和CFE中ADECFE(AAS),DE=EF,AD=CF,A=ACF,故选:C【点评】本题考查了全等三角形的性质和判定,平行线的性质,注意:全等三角形的对应边相等,全等三角形的判定定理有SAS,ASA,

16、AAS,SSS12A,B两地相距80km,甲、乙两人骑车分别从A,B两地同时相向而行,他们都保持匀速行驶如图,l1,l2分别表示甲、乙两人离B地的距离y(km)与骑车时间x(h)的函数关系根据图象得出的下列结论,正确的个数是()甲骑车速度为30km/小时,乙的速度为20km/小时;l1的函数表达式为y=8030x;l2的函数表达式为y=20x;小时后两人相遇A1个B2个C3个D4个【分析】根据速度=,即可求出两人的速度,利用待定系数法求出一次函数和正比例函数解析式即可判定正确,利用方程组求出交点的横坐标即可判断即可【解答】解:甲骑车速度为=30km/小时,乙的速度为=20km/小时,故正确,设

17、l1的表达式为y=kx+b,把(0,80),(1,50)代入得到:,解得,直线l1的解析式为y=30x+80,故正确,设直线l2的解析式为y=kx,把(3,60)代入得到k=20,直线l2的解析式为y=20x,故正确,由,解得x=,小时后两人相遇,故正确,故选:D【点评】本题考查一次函数的应用,速度、时间、路程之间的关系等知识,解题的关键是熟练掌握基本知识,属于中考常考题型二、填空题(本大题共6小题,每小题3分,共18分。只要求填出最后结果)13的平方根是2【分析】根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的平方根,由此即可解决问题【解答】解:的平方根是2故答

18、案为:2【点评】本题考查了平方根的定义注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根14如果点P在第四象限内,点P到x轴的距离是4,到y轴的距离是3,那么点P的坐标为(3,4)【分析】根据各象限内点的坐标特征解答即可【解答】解:点P在第四象限内,点P到x轴的距离是4,到y轴的距离是3,那么点P的坐标为(3,4),故答案为:(3,4)【点评】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(,+);第三象限(,);第四象限(+,)15如图,已知ABCDEF,A=50,ACB=30,则E=

19、100【分析】根据全等三角形的性质可得A=EDC=50,ACB=F=30,然后利用三角形内角和定理可得答案【解答】解:ABCDEF,A=EDC=50,ACB=F=30,E=1803050=100故答案为:100【点评】此题主要考查了全等三角形的性质,关键是掌握全等三角形的对应角相等16把直线y=2x1向上平移三个单位,则平移后直线与x轴的交点坐标是(1,0)【分析】利用一次函数平移规律,上加下减进而得出平移后函数解析式,再求出图象与坐标轴交点即可【解答】解:直线y=2x1沿y轴向上平移3个单位,则平移后直线解析式为:y=2x1+3=2x+2,当y=0时,则x=1,故平移后直线与x轴的交点坐标为

20、:(1,0)故答案为:(1,0)【点评】此题主要考查了一次函数平移变换,正确记忆一次函数平移规律是解题关键17如图,有一块直角三角形纸片,两直角边AC=12,BC=16,现将直角边AC沿AD折叠,使它落在斜边AB上,且与AE重合,则ADB的面积为60【分析】先根据勾股定理求得AB的长,再根据折叠的性质求得AE,BE的长,从而利用勾股定理可求得DE的长,进而利用三角形面积解答【解答】解:AC=12,BC=16,AB=20,AE=12(折叠的性质),BE=8,设CD=DE=x,则在RtDEB中,82+x2=(16x)2,解得x=6,即DE等于6,所以ADB的面积=,故答案为:60【点评】本题考查了

21、翻折变换(折叠问题),以及利用勾股定理解直角三角形的能力,即:直角三角形两直角边的平方和等于斜边的平方18已知一次函数y=kx+2(k0)与两坐标轴围成的三角形面积为2,则一次函数的表达式为y=x+2或y=x+2【分析】先求出一次函数y=kx+b与x轴和y轴的交点,再利用三角形的面积公式得到关于k的方程,解方程即可求出k的值【解答】解:可得一次函数y=kx+2(k0)图象过点(0,2),令y=0,则x=,函数图象与两坐标轴围成的三角形面积为2,2|=2,即|=2,解得:k=1,则函数的解析式是y=x+2或y=x+2故答案为:y=x+2或y=x+2【点评】本题考查一次函数图象上点的坐标特征和三角

22、形的面积公式,有一定的综合性,注意点的坐标和线段长度的转化三、解答题(本大题共7小题,共66分)19(9分)计算:(1);(2)+|3|+(2)0;(3)已知2x+1的平方根是3,3x+y2的立方根是3,求xy的平方根【分析】(1)原式利用平方根,立方根定义计算即可求出值;(2)原式利用绝对值的代数意义,以及零指数幂法则计算即可求出值;(3)利用平方根,立方根定义求出x与y的值,即可求出所求【解答】解:(1)原式=39=12;(2)原式=+3+1=4;(3)根据题意得:2x+1=9,3x+y2=27,解得:x=4,y=37,则xy=4(37)=41,即41的平方根是【点评】此题考查了实数的运算

23、,熟练掌握运算法则是解本题的关键20(7分)尺规作图:(不要求写作法,只保留作图痕迹)如图,工厂A和工厂B,位于两条公路OC、OD之间的地带,现要建一座货物中转站P若要求中转站P到两条公路OC、OD的距离相等,且到工厂A和工厂B的距离之和最短,请用尺规作出P的位置【分析】结合角平分线的作法以及利用轴对称求最短路线的方法分析得出答案【解答】解:如图所示:点P即为所求【点评】此题主要考查了应用设计与作图,正确应用轴对称求最短路线的方法是解题关键21(8分)如图,某港口P位于东西方向的海岸线上,A、B两艘轮船同时从港口P出发,各自沿一固定方向航行,A轮船每小时航行12海里,B轮船每小时航行16海里它

24、们离开港口一个半小时后分别位于点R、Q处,且相距30海里已知B轮船沿北偏东60方向航行(1)A轮船沿哪个方向航行?请说明理由;(2)请求出此时A轮船到海岸线的距离【分析】(1)直接得出RP=18海里,PQ=24海里,QR=30海里,利用勾股定理逆定理以及方向角得出答案;(2)直接利用sin60=,得出答案【解答】解:(1)由题意可得:RP=18海里,PQ=24海里,QR=30海里,182+242=302,RPQ是直角三角形,语文课本中的文章都是精选的比较优秀的文章,还有不少名家名篇。如果有选择循序渐进地让学生背诵一些优秀篇目、精彩段落,对提高学生的水平会大有裨益。现在,不少语文教师在分析课文时

25、,把文章解体的支离破碎,总在文章的技巧方面下功夫。结果教师费劲,学生头疼。分析完之后,学生收效甚微,没过几天便忘的一干二净。造成这种事倍功半的尴尬局面的关键就是对文章读的不熟。常言道“书读百遍,其义自见”,如果有目的、有计划地引导学生反复阅读课文,或细读、默读、跳读,或听读、范读、轮读、分角色朗读,学生便可以在读中自然领悟文章的思想内容和写作技巧,可以在读中自然加强语感,增强语言的感受力。久而久之,这种思想内容、写作技巧和语感就会自然渗透到学生的语言意识之中,就会在写作中自觉不自觉地加以运用、创造和发展。RPQ=90,B轮船沿北偏东60方向航行,RPS=30,A轮船沿北偏东30方向航行;(2)

26、过点R作RMPE于点M,则RPM=60,则sin60=,解得:RM=9答:此时A轮船到海岸线的距离为9海里【点评】此题主要考查了勾股定理的逆定理以及解直角三角形的应用,正确得出各线段长是解题关键22(10分)(1)点P的坐标为(x,y),若x=y,则点P在坐标平面内的位置是在一、三象限内两坐标轴夹角的平分线上;若x+y=0,则点P在坐标平面内的位置是在二、四象限内两坐标轴夹角的平分线上;(2)已知点Q的坐标为(22a,a+8),且点Q到两坐标轴的距离相等,求点Q的坐标【分析】(1)根据互为相反数的两个数的和等于0判断出x、y互为相反数,然后解答(2)根据点Q到两坐标轴的距离相等列出方程,然后求

27、解得到a的值,再求解即可【解答】解:(1)点P的坐标为(x,y),若x=y,点P在一、三象限内两坐标轴夹角的平分线上x+y=0,x、y互为相反数,P点在二、四象限内两坐标轴夹角的平分线上故答案为:在一、三象限内两坐标轴夹角的平分线上在二、四象限内两坐标轴夹角的平分线上(2)点Q到两坐标轴的距离相等,|22a|=|8+a|,22a=8+a或22a=8a,解得a=2或a=10,当a=2时,22a=22(2)=6,8+a=82=6,当a=10时,22a=220=18,8+a=8+10=18,所以,点Q的坐标为(6,6)或(18,18)【点评】本题考查了点坐标,熟记坐标轴上与各象限内点的坐标特征是解题

28、的关键23(10分)如图,E、F分别是等边三角形ABC的边AB,AC上的点,且BE=AF,CE、BF交于点P(1)求证:CE=BF;(2)求BPC的度数【分析】(1)欲证明CE=BF,只需证得BCEABF;(2)利用(1)中的全等三角形的性质得到BCE=ABF,则由图示知PBC+PCB=PBC+ABF=ABC=60,即PBC+PCB=60,所以根据三角形内角和定理求得BPC=120【解答】(1)证明:如图,ABC是等边三角形,BC=AB,A=EBC=60,在BCE与ABF中,BCEABF(SAS),CE=BF;(2)解:由(1)知BCEABF,BCE=ABF,PBC+PCB=PBC+ABF=A

29、BC=60,即PBC+PCB=60,BPC=18060=120即:BPC=120【点评】本题考查了全等三角形的判定与性质、等边三角形的性质全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具在判定三角形全等时,关键是选择恰当的判定条件24(10分)如图,点A的坐标为(,0),点B的坐标为(0,3)(1)求过A,B两点直线的函数表达式;(2)过B点作直线BP与x轴交于点P,且使OP=2OA,求ABP的面积【分析】(1)设直线l的解析式为y=ax+b,把A、B的坐标代入求出即可;(2)分为两种情况:当P在x轴的负半轴上时,当P在x轴的正半轴上时,求出AP和OB,根据三角形面积公式求出即

30、可【解答】解:(1)设过A,B两点的直线解析式为y=ax+b(a0),则根据题意,得,解得,则过A,B两点的直线解析式为y=2x+3;(2)设P点坐标为(x,0),依题意得x=3,所以P点坐标分别为P1(3,0),P2(3,0)S=,S=(3)3=,所以,ABP的面积为或【点评】本题考查了用待定系数法求一次函数的解析式,三角形的面积,解二元一次方程组等知识点的应用,关键是能求出符合条件的两种情况25(12分)如图,在ABC中,BAC=90,BE平分ABC,AMBC于点M,交BE于点G,AD平分MAC,交BC于点D,交BE于点F(1)判断直线BE与线段AD之间的关系,并说明理由;(2)若C=30

31、,图中是否存在等边三角形?若存在,请写出来并证明;若不存在,请说明理由【分析】(1)根据余角的性质即可得到5=C;由AD平分MAC,得到3=4,根据三角形的外角的性质得到BAD=ADB,推出BAD是等腰三角形,于是得到结论(2)根据5=C=30,AMBC,可得ABD=60,CAM=60,进而得到ADB=3+C=60,BAD=60,依据ABD=BDA=BAD,可得ABD是等边三角形;依据AEG=AGE=GAE,即可得到AEG是等边三角形【解答】解:(1)BE垂直平分AD,理由:AMBC,ABC+5=90,BAC=90,ABC+C=90,5=C;AD平分MAC,3=4,BAD=5+3,ADB=C+

32、4,5=C,BAD=ADB,BAD是等腰三角形,又1=2,BE垂直平分AD(2)ABD、GAE是等边三角形理由:5=C=30,AMBC,ABD=60,BAC=90,CAM=60,AD平分CAM,4=CAM=30,ADB=3+C=60,BAD=60,ABD=BDA=BAD,ABD是等边三角形教师范读的是阅读教学中不可缺少的部分,我常采用范读,让幼儿学习、模仿。如领读,我读一句,让幼儿读一句,边读边记;第二通读,我大声读,我大声读,幼儿小声读,边学边仿;第三赏读,我借用录好配朗读磁带,一边放录音,一边幼儿反复倾听,在反复倾听中体验、品味。RtBGM中,BGM=60=AGE,又RtACM中,CAM=

33、60,AEG=AGE=GAE,“教书先生”恐怕是市井百姓最为熟悉的一种称呼,从最初的门馆、私塾到晚清的学堂,“教书先生”那一行当怎么说也算是让国人景仰甚或敬畏的一种社会职业。只是更早的“先生”概念并非源于教书,最初出现的“先生”一词也并非有传授知识那般的含义。孟子中的“先生何为出此言也?”;论语中的“有酒食,先生馔”;国策中的“先生坐,何至于此?”等等,均指“先生”为父兄或有学问、有德行的长辈。其实国策中本身就有“先生长者,有德之称”的说法。可见“先生”之原意非真正的“教师”之意,倒是与当今“先生”的称呼更接近。看来,“先生”之本源含义在于礼貌和尊称,并非具学问者的专称。称“老师”为“先生”的

34、记载,首见于礼记?曲礼,有“从于先生,不越礼而与人言”,其中之“先生”意为“年长、资深之传授知识者”,与教师、老师之意基本一致。AEG是等边三角形【点评】本题考查了等腰三角形的判定和性质,三角形的内角和,线段垂直平分线的性质,熟练正确等腰三角形的判定和性质是解题的关键单靠“死”记还不行,还得“活”用,姑且称之为“先死后活”吧。让学生把一周看到或听到的新鲜事记下来,摒弃那些假话套话空话,写出自己的真情实感,篇幅可长可短,并要求运用积累的成语、名言警句等,定期检查点评,选择优秀篇目在班里朗读或展出。这样,即巩固了所学的材料,又锻炼了学生的写作能力,同时还培养了学生的观察能力、思维能力等等,达到“一石多鸟”的效果。第 17 页

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 初中 > 数学 > 考试试卷
版权提示 | 免责声明

1,本文(山东省威海市文登市七年级(上)期末数学试卷(五四学制)(解析版)(DOC 17页).doc)为本站会员(2023DOC)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!


侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|