1、精编初一数学竞赛专题分类辅导全书目录一、 整数的分拆二、 与年号有关的竞赛三、 图形与面积四、 立体图形五、 列方程解应用题六、 应用问题选讲七、 抽屉原理八、 染色与赋值九、 计数的方法与原理第1讲 整数的分拆整数的分拆,就是把一个自然数表示成为若干个自然数的和的形式,每一种表示方法,就是自然数的一个分拆。整数的分拆是古老而又有趣的问题,其中最著名的是哥德巴赫猜想。在国内外数学竞赛中,整数分拆的问题常常以各种形式出现,如,存在性问题、计数问题、最优化问题等。例1 电视台要播放一部30集电视连续剧,若要求每天安排播出的集数互不相等,则该电视连续剧最多可以播几天?分析与解:由于希望播出的天数尽可
2、能地多,所以,在每天播出的集数互不相等的条件下,每天播放的集数应尽可能地少。我们知道,1+2+3+4+5+6+7=28。如果各天播出的集数分别为1,2,3,4,5,6,7时,那么七天共可播出28集,还剩2集未播出。由于已有过一天播出2集的情形,因此,这余下的2集不能再单独于一天播出,而只好把它们分到以前的日子,通过改动某一天或某二天播出的集数,来解决这个问题。例如,各天播出的集数安排为1,2,3,4,5,7,8或1,2,3,4,5,6,9都可以。所以最多可以播7天。说明:本题实际上是问,把正整数30分拆成互不相等的正整数之和时,最多能写成几项之和?也可以问,把一个正整数拆成若干个整数之和时,有
3、多少种分拆的办法?例如:5=1+1+1+1+1=1+1+1+2,=1+2+2 =1+1+3=2+3 =1+4,共有6种分拆法(不计分成的整数相加的顺序)。例2 有面值为1分、2分、5分的硬币各4枚,用它们去支付2角3分。问:有多少种不同的支付方法?分析与解:要付2角3分钱,最多只能使用4枚5分币。因为全部1分和2分币都用上时,共值12分,所以最少要用3枚5分币。当使用3枚5分币时,53=15,23-15=8,所以使用2分币最多4枚,最少2枚,可有23=15+(2+2+2+2),23=15+(2+2+2+1+1),23=15+(2+2+1+1+1+1),共3种支付方法。当使用4枚5分币时,54=
4、20,23-20=3,所以最多使用1枚2分币,或不使用,从而可有23=20+(2+1),23=20+(1+1+1),共2种支付方法。总共有5种不同的支付方法。说明:本题是组合学中有限条件的整数分拆问题的一个特例。例3 把37拆成若干个不同的质数之和,有多少种不同的拆法?将每一种拆法中所拆出的那些质数相乘,得到的乘积中,哪个最小?解:37=3+5+29=2+5+7+23=3+11+23=2+3+13+19=5+13+19=7+11+19=2+5+11+19=7+13+17=2+5+13+17=2+7+11+17,共10种不同拆法,其中3529=435最小。说明:本题属于迄今尚无普遍处理办法的问题
5、,只是硬凑。比37小的最大质数是31,但37-31=6,6不能分拆为不同的质数之和,故不取;再下去比37小的质数是29,37-29=8,而8=3+5。其余的分拆考虑与此类似。例4 求满足下列条件的最小自然数:它既可以表示为9个连续自然数之和,又可以表示为10个连续自然数之和,还可以表示为11个连续自然数之和。解:9个连续自然数之和是其中第5个数的9倍,10个连续自然数之和是其中第5个数和第6个数之和的5倍,11个连续自然数之和是其中第6个数的11倍。这样,可以表示为9个、10个、11个连续自然数之和的数必是5,9和11的倍数,故最小的这样的数是5,9,11=495。对495进行分拆可利用平均数
6、,采取“以平均数为中心,向两边推进的方法”。例如,49510=49.5,则10个连续的自然数为:45,46,47,48,49,(49.5),50,51,52,53,54。于是495=45+46+54。同理可得495=51+52+59=40+41+50。例5 若干只同样的盒子排成一列,小聪把42个同样的小球放在这些盒子里然后外出,小明从每只盒子里取出一个小球,然后把这些小球再放到小球数最少的盒子里去,再把盒子重排了一下。小聪回来,仔细查看,没有发现有人动过小球和盒子。问:一共有多少只盒子?分析与解:设原来小球数最少的盒子里装有a只小球,现在增加到了b只,由于小明没有发现有人动过小球和盒子,这说明
7、现在又有了一只装有a个小球的盒子,这只盒子里原来装有(a+1)个小球。同理,现在另有一个盒子里装有(a+1)个小球,这只盒子里原来装有(a+2)个小球。依此类推,原来还有一只盒子装有(a+3)个小球,(a+4)个小球等等,故原来那些盒子中装有的小球数是一些连续整数。现在这个问题就变成了:将42分拆成若干个连续整数的和,一共有多少种分法,每一种分法有多少个加数?因为42=67,故可将42看成7个6的和,又(7+5)+(8+4)+(9+3)是6个6,从而42=3+4+5+6+7+8+9,一共有7个加数。又因42=143,故可将42写成13+14+15,一共有3个加数。又因42=212,故可将42写
8、成9+10+11+12,一共有4个加数。于是原题有三个解:一共有7只盒子、4只盒子或3只盒子。例6 机器人从自然数1开始由小到大按如下规则进行染色:凡能表示为两个不同合数之和的自然数都染成红色,不符合上述要求的自然数染成黄色(比如23可表示为两个不同合数15和8之和,23要染红色;1不能表示为两个不同合数之和,1染黄色)。问:被染成红色的数由小到大数下去,第2000个数是多少?请说明理由。解:显然1要染黄色,2=1+1也要染黄色,3=1+2,4=1+3=2+2,5=1+4=2+3,6=1+5=2+4=3+3,7=1+6=2+5=3+4,8=1+7=2+6=3+5=4+4,9=1+8=2+7=3
9、+6=4+5,11=1+10=2+9=3+8=4+7=5+6。可见,1,2,3,4,5,6,7,8,9,11均应染黄色。下面说明其它自然数n都要染红色。(1)当n为大于等于10的偶数时,n=2k=4+2(k-2)由于n10,所以k5,k-23,2(k-2)与4均为合数,且不相等。也就是说,大于等于10的偶数均能表示为两个不同的合数之和,应染红色。(2)当n为大于等于13的奇数时,n=2k+1=9+2(k-4)由于n13,所以k6,k-42,2(k-4)与9均为合数,且不相等。也就是说,大于等于13的奇数均能表示为两个不同的合数之和,应染红色。综上所述,除了1,2,3,4,5,6,7,8,9,1
10、1这10个数染黄色外,其余自然数均染红色,第k个染为红色的数是第(k+10)个自然数(k2)。所以第2000个染为红色的数是2000+10=2010。下面看一类有规律的最优化问题。例7 把12分拆成两个自然数的和,再求出这两个自然数的积,要使这个积最大,应该如何分拆?解:把12分拆成两个自然数的和,当不考虑加数的顺序时,有1+11,2+10,3+9,4+8,5+7,6+6六种方法。它们的乘积分别是111=11,210=20,39=27,48=32,57=35,66=36。显然,把12分拆成6+6时,有最大的积66=36。例8 把11分拆成两个自然数的和,再求出这两个自然数的积,要使这个积最大,
11、应该如何分拆?分析与解:把11分拆成两个自然数的和,当不考虑加数的顺序时,有1+10,2+9,3+8,4+7,5+6五种方法。它们的乘积分别是:110=10,29=18,38=24,47=28,56=30。显然,把11分拆成5+6时,有最大的积56=30。说明:由上面的两个例子可以看出,在自然数n的所有二项分拆中,当n是偶数2m时,以分成m+m时乘积最大;当n是奇数2m+1时,以分成m+(m+1)时乘积最大。换句话说,把自然数S(S1)分拆为两个自然数m与n的和,使其积mn最大的条件是:m=n,或m=n+1。在具体分析时,当S为偶数时, ;当S为奇数时,分别为。例9 试把1999分拆为8个自然
12、数的和,使其乘积最大。分析:反复使用上述结论,可知要使分拆成的8个自然数的乘积最大,必须使这8个数中的任意两数相等或差数为1。解:因为1999=8249+7,由上述分析,拆法应是1个249,7个250,其乘积2492507为最大。说明:一般地,把自然数S=pq+r(0rp,p与q是自然数)分拆为p个自然数的和,使其乘积M为最大,则M为qp-r(q+1)r。例10 把14分拆成若干个自然数的和,再求出这些数的积,要使得到的积最大,应该把14如何分拆?这个最大的乘积是多少?分析与解:我们先考虑分成哪些数时乘积才能尽可能地大。首先,分成的数中不能有1,这是显然的。其次,分成的数中不能有大于4的数,否
13、则可以将这个数再分拆成2与另外一个数的和,这两个数的乘积一定比原数大,例如7就比它分拆成的2和5的乘积小。再次,因为4=22,故我们可以只考虑将数分拆成2和3。注意到2+2+2=6,222=8;3+3=6,33=9,因此分成的数中若有三个2,则不如换成两个3,换句话说,分成的数中至多只能有两个2,其余都是3。根据上面的讨论,我们应该把14分拆成四个3与一个2之和,即14=3+3+3+3+2,这五数的积有最大值33332=162。说明:这类问题最早出现于1976年第18届国际数学奥林匹克试卷中。该试卷第4题是:若干个正整数的和为1976,求这些正整数的积的最大值。答案是23658。这是由美国提供
14、的一个题目,时隔两年,它又出现在美国大学生数学竞赛中。1979年美国第40届普特南数学竞赛A-1题是:求出正整数n及a1,a2,an的值,使a1+a2+an=1979且乘积最大。答案是n=660。1992年武汉市小学数学竞赛第一题的第6题是:将1992表示成若干个自然数的和,如果要使这些数的乘积最大,这些自然数是_ _ _。答案:这些数应是664个3。上述三题的逻辑结构并不随和的数据而改变,所以分别冠以当年的年份1976,1979和1992,这种改换数据的方法是数学竞赛命题中最简单的方法,多用于不同地区不同级别不同年份的竞赛中,所改换的数据一般都是出于对竞赛年份的考虑。将上述三题的结论推广为一
15、般情形便是:把自然数S(S1)分拆为若干个自然数的和:S=a1+a2+an,则当a1,a2,an中至多有两个2,其余都是3时,其连乘积m=a1a2an有最大值。例11 把1993分拆成若干个互不相等的自然数的和,且使这些自然数的乘积最大,该乘积是多少?解:由于把1993分拆成若干个互不相等的自然数的和的分法只有有限种,因而一定存在一种分法,使得这些自然数的乘积最大。若1作因数,则显然乘积不会最大。把1993分拆成若干个互不相等的自然数的和,因数个数越多,乘积越大。为了使因数个数尽可能地多,我们把1993分成2+3+n直到和大于等于1993。若和比1993大1,则因数个数至少减少1个,为了使乘积
16、最大,应去掉最小的2,并将最后一个数(最大)加上1。若和比1993大k(k1),则去掉等于k的那个数,便可使乘积最大。所以n=63。因为2015-1993=22,所以应去掉22,把1993分成(2+3+21)+(23+24+63)这一形式时,这些数的乘积最大,其积为2321232463。说明:这是第四届“华杯赛”武汉集训队的一道训练题,在训练学生时,发现大多数学生不加思索地沿用例10的思考方法,得出答案是36634,而忽视了题中条件“分成若干个互不相等的自然数的和”。由此可见,认真审题,弄清题意的重要性。例12 将1995表示为两个或两个以上连续自然数的和,共有多少种不同的方法?分析与解:为了
17、解决这个问题,我们设1995可以表示为以a为首项的k(k1)个连续自然数之和。首项是a,项数为k,末项就是a+k-1,由等差数列求和公式,得到化简为:(2a+k-1)k=3990。(*)注意,上式等号左边的两个因数中,第一个因数2a+k-1大于第二个因数k,并且两个因数必为一奇一偶。因此,3990有多少个大于1的奇约数,3990就有多少种形如(*)式的分解式,也就是说,1995就有多少种表示为两个或两个以上连续自然数之和的方法。因为1995与3990的奇约数完全相同,所以上述说法可以简化为,1995有多少个大于1的奇约数,1995就有多少种表示为两个或两个以上连续自然数之和的方法。1995=3
18、5719,共有15个大于1的奇约数,所以本题的答案是15种。一般地,我们有下面的结论:若自然数N有k个大于1的奇约数,则N共有k种表示为两个或两个以上连续自然数之和的方法。知道了有多少种表示方法后,很自然就会想到,如何找出这些不同的表示方法呢?从上面的结论可以看出,每一个大于1的奇约数对应一种表示方法,我们就从1995的大于1的奇约数开始。1995的大于1的奇约数有:3,5,7,15,19,21,35,57,95,105,133,285,399,665,1995。例如,对于奇约数35,由(*)式,得:3990=35114,因为11435,所以 k=35,2a+k-1=114,解得a=40。推知
19、35对应的表示方法是首项为40的连续35个自然数之和,即:1995=40+41+42+73+74。再如,对于奇约数399,由(*)式,得3990=39910因为39910,所以k=10,2a+k-1=399,解得a=195。推知399对应的表示方法是首项为195的连续10个自然数之和,即:1995=195+196+197+204。对于1995的15个大于1的奇约数,依次利用(*)式,即可求出15种不同的表示方法。练习41将210拆成7个自然数的和,使这7个数从小到大排成一行后,相邻两个数的差都是5。第1个数与第6个数分别是几?2将135个人分成若干个小组,要求任意两个组的人数都不同,则至多可以
20、分成多少组?3把19分成几个自然数(可以相同)的和,再求出这些数的乘积,并且要使得到的乘积尽可能大,最大乘积是多少?4把1999分拆成两个自然数的和,当不考虑加数的顺序时,一共有多少种不同的分拆方法?求出这两个自然数的积,要使这个积最大,应将1999如何分拆?5把456表示成若干个连续自然数的和。要求写出所有的表达式(如9可以有两种表达形式:9=4+5=2+3+4)。6几个连续自然数相加,和能等于2000吗?如果能,有几种不同的答案?写出这些答案。如果不能,说明理由。7把70分拆成11个不同自然数的和,这样的分拆方式一共有多少种?将不同的表示方法列举出来。8有一把长为13厘米的直尺,在上面刻几
21、条刻度线,使得这把尺子能一次量出1到13厘米的所有整厘米的长度。问:至少要刻几条线?要刻在哪些位置上?练习4答案115,40。解:这7个数中第4个数是中间数,它是这7个数的平均数,即2107=30。因为相邻 2数的差都是 5,所以这7个数是15,20,25,30,35,40,45。故第1个数是15,第6个数是40。215组。解:因为要求任意两个组的人数不相等,且分得的组要尽可能地多,所以,要使每个组分得的人数尽可能地少。由于1+2+3+4+14+15=120,所以将 135人分成每组人数不等的15个组后还余15人。剩下的15人不能再组成一个或几个新的小组,否则就会出现两个或两个以上的组的人数相
22、等的情况。因此,应将剩下的15人安插在已分好的15个组之中,所以至多可以分成15个组。这15个组各组人数可以有多种情况,例如,分别是 2,3,4,5,6,14,15,16人。3972。解:要使乘积尽可能大,把19分成的几个自然数中,3要尽量多且不能有1,所以应把19分成5个3及1个4的和。最大乘积为354=972。4有999种方法,分成999+1000时积最大。5提示:456有三个大于1的奇约数3,19,57。利用例12的方法可得:对于3,有k=3,a=151;对19,有k=19,a=15;对于57,有k=16,a=21。所以456有如下三种分拆方法:456151+152+153 21+22+
23、23+39 15+16+17+33。6能。提示:与例12类似,2000=2453,有三个大于1的奇约数5,25,125。对于5,有k=5,a=398;对于25,有k=25,a=68;对于125,有k=32, a=47。所以2000共有如下三种分拆方法:2000398+399+400+401+40268+69+70+91+9247+48+49+77+78。75种。解:1+2+3+11=66,现在要将4分配到适当的加数上,使其和等于70,又要使这11个加数互不相等。先将4分别加在后4个加数上,得到4种分拆方法:701+2+3+4+5+6+7+8+9+10+151+2+3+4+5+6+7+8+9+1
24、4+111+2+3+4+5+6+7+8+13+10+111+2+3+4+5+6+7+12+9+10+11。再将4拆成1+3,把1和3放在适当的位置上,仅有1种新方法:1+2+3+4+5+6+7+8+9+13+12。再将4拆成1+1+2或1+1+1+1+1或2+2,分别加在不同的位置上,都得不出新的分拆方法,故这样的分拆方法一共有5种。8至少要刻4条线,例如刻在1,4,5,11厘米处,便可一次量出1到13厘米的所有整厘米的长度。这是因为由1,4,5,11,13这5个数以及它们之间任意2个的差能够得到1到13这13个整数,见下列各式:5-4=1, 13-11=2, 4-1=3,11-5=6, 11
25、-4=7, 13-5=8,13-4=9, 11-110, 13-112。下面我们来证明,只有3个刻度是不够的。如果只刻了3条线,刻在a厘米、b厘米、 c厘米处(0abc13),那么 a,b,C,13两两之差(大减小),只有至多6个不同的数:13-a,13-b,13-c,c-a,c-b,b-a,再加上a,b,c,13这4个数,至多有10个不同的数,不可能得到1到13这13个不同的整数来。顺便说明一下,刻法不是唯一的。例如我们也可以刻在1厘米、2厘米、6厘米、10厘米这4个位置上。第2讲 与年号有关的竞赛题在数学竞赛中,常可以看到某些题目中出现了当年的年号,这类题我们称之为“年号题”。这类题趣味性
26、强,时间性强,引起了参加竞赛的少年朋友很大的兴趣。“年号题”一般可分成两类,一类是题目的条件中出现了当年的年号,另一类是题目答案中出现了当年的年号。下面我们分别举例说明这两类问题的解法。一、题目条件中出现年号的问题1题目在编制和解答中巧妙地运用了该年年号的数字特征,如年号数值的质因数分解式、是否质数、它的数的整除性等等。例1 将19到80的两位数顺次排成数A192021227980。问:这个数A能否被1980整除?解:由于1980=9920,因此要考察A能否被1980整除,只需要考察A能否被99和20整除就行了。能被20整除是显然的。因为99除100的任何次方所得的余数都是1,所以A19100
27、61+2010060+79100+80除以99的余数与B=19+20+79+80=9931除以99的余数相同。因为99|B,所以99|A。于是A能被1980整除。例2 用S(n)表示自然数n的各位数字之和,又n+S(n)=1999,求自然数n。11x+2y89。注意到x是奇数且x,y都是一位整数,不难求得x=7,y=6,从而n=1976。例3 在33的九宫格中,填上 9个不同的自然数,使得每行三数相乘,每列三数相乘所得的6个乘积都等于P。试确定P能取1996,1997, 1998,1999,2000,2001这6个数中的哪些值。解:所填的9个数应为P的9个不同约数,又P不能填入九宫格内,故P的
28、不同约数的个数应不小于10。1996=22499,有6个约数;1997和1999是质数,各有2个约数;1998=23337,有16个约数;2000=2453,有20个约数;2001=32329,有8个约数。显然P不能取1996,1997,1999和2001。当P=1998和2000时,有下图的填法(填法不唯一),故P可取1998和2000。例4 有1999块边长为1的正方块,求满足下述条件的有盖箱子的尺寸:(1)长、宽、高均大于1;(2)将正方块放入箱子中时,能合上盖子,并且使空隙最小;(3)在保证(1)(2)的前提下,使箱子的表面积最小。解:由于1999是质数且2000=2453,故空隙最小
29、的箱子的体积应是2000。表面积最小的箱子应是各边长相差尽量小的长方体。将2000分解成三个尽量接近的三个数的乘积是:2000101020,所以表面积最小的箱子的长、宽、高应为10,10,20。2题目中的年号数是可以换成任意的自然数n的,它只不过是编制时仅仅用具体的年号数来代替n。对于这种情况要善于透过表面看本质,做过后要将特殊推广到一般。例5若两个不相等的自然数的倒数的和的一半等于,求这两个自然数。解:设这两个自然数为x,y,且xy。比较两式,取n=1999,有2x=19992000,2y=1999+1,于是x=1999000,y=1000。例6 有一张19492000的长方形方格纸,方格边
30、长为1。问:这个长方形的一条对角线穿过多少个方格?解:由于1949与2000是互质数,故对角线在长方形内不经过任何一个格点。对角线与纵向的1950条线有1950个交点,与横向的2001条线有2001个交点。去掉重复计算的对角线两个端点,它与纵横线共有1950+2001-2=3949(个)交点,交点间有3948条线段,即对角线穿过3948个小方格。例7 有两个容器A和B,A中装有1升水,B是空的。先将容器A中的水的倒入容器B,然后将容器B中的水的倒入容器A,再将容器A中的水的倒入容器B如此继续,这样倒了1999次以后,A中还有水多少升?解:设an和bn分别表示倒了n次以后A中和B中水的升数,显然
31、an+bn=1。列表观察如下:说明:如果求倒了2000次以后,A中还剩多少水,那么可进一步计算如下:例8 从自然数列1,2,3,4,中依次划去3的倍数和4的倍数,保留5的倍数(例如15,20都不划去),将剩下的数依次写成数列A11,A22,A35,A4=7,求A2000。解:3,4,5的最小公倍数是60,在连续的60个自然数中,3的倍数有603=20(个),4的倍数有604=15(个),12的倍数有6012=5(个),15的倍数有6015=4(个), 20的倍数有6020=3(个),60的倍数有1个。于是由容斥原理得到,连续60个自然数中,按题设要求划去各数后还剩下60-(20+15)+(5+
32、4+3)-1=36(个)。200036=5520。因为在134中可以剩下20个数,所以剩下的第2000个数是A2000=6055+343334。二、题目答案中出现年号的题这类问题和一般的数学题没有什么区别,都要运用数字运算的规律和特征,借助逻辑推理求得问题的解决。例9 将我家门牌号码倒置着看是一个四位数,它比原来的号码大7875,我家门牌号码是多少?解:倒置后仍有意义的数有0,1,6,8,9。设门牌号码正着看是于是门牌号码为1986。例10 有一个小于2000的四位数,它恰好含有14个因数,其中有一个质因数的末位数字是1,求这个四位数。解:因为14=27,所以这个四位数的质因数分解式为因为46
33、=40962000,所以P23。故P1的末位数为1。若P2=3,则m=P13611362000,舍去。故P2=2。若P1=11,则m=6411=704,不是四位数。若P141,则m64412000,与题设不符。当P1=31时,m=6431=1984。这是本题的唯一解。例11 在20世纪的最后10年中,恰有一年年号的不同约数的个数比1990的约数个数少2,求该年号所有不同正约数的积。解:用T(A)表示A的不同约数个数。1990=25199,T(1990)=(1+1)(1+1)(11)=8;199111181,T(1991)=(1+1)(1+1)=4;199223383,T(1992)=(3+1)
34、(1+1)(11)=16;1993是质数,T(1993)=2;19942997,T(1994)=(1+1)(1+1)=4;19953579,T(1995)=(1+1)(1+1)(1+1)(1+1)=16;199622499,T(1996)(2+1)(1+1)6。故所求年号数为1996,其所有不同正约数之积为1222499(2499)199619962。例12 平面上有1001个点,如果每两点连一条线段,并把中点染成红色,那么平面上至少有多少个红点?解:在所有点中,找出距离最大的两点A和B,分别以A,B为圆心,以AB的长度的一半为半径作两个圆。对余下的999个点中的任一点P,因为所以AP的中点在
35、A内,或在圆周上。又因为余下的999个点是不同的的点,它们与A的中点也互不相同,所以在A(含圆周)中至少有999个红点,这999个红点与AB的中点不重叠。同理,在B中也至少有999个红点。再加上 AB的中点,平面上至少有2999+1=1999(个)红色的点。练习5 。22001个棱长为1厘米的正方体可以垒成多少种不同长方体?3梯形的上底、下底及两腰的长分别是1,9,8,8。这个梯形的四个角的大小分别是多少?4将四位数的数字顺序重新排列后,可以得到一些新的四位数。现有一个四位数M,它比新数中的最大数小7983,比新数中的最小数大99,求这个四位数。5有一个四位数N,它小于3000,且满足下列条件
36、:(1)N中含有两个质因数3,且只含有两个质因数3;(2)N1中含有两个质因数2,且只含有两个质因数2;(3)N和N1都不含质因数5;(4)N的十位数字比个位数字小1。求这个四位数。6设P和q为自然数,已知,判断P是否是1999的倍数。7自1986开始写下一串数字:1 9 8 6 4 7 5 2 8 2 7 9 6其中前四个数字后的每一个数字等于它前面四个数字之和的末位数字。问:在这一串数字中会不会出现连续四个数,恰好是1,9,9,8?8规定一种运算“”,ab表示两个数a和b的差(大减小)。例如:53=2,710=3,66=0。已知x1,x2,x2000,是1,2,2000的一个排列,求(x1
37、1)+(x22)+(x20002000)的最大值。练习5答案: 24种。解:2001=32329=16929=1238713667。360,60,120,120。解:如右图,将梯形分割成一个平行四边形和一个三角形,显然这个三角形是等边三角形,它的每个角都是60,从而梯形的各个角分别为60,60,120,120。41998。由上式知,a=9,d=1,b-c=1。这个四位数等于这个四位数是1998。51989。知d5且d1,从而d可能为3,7或9,于是c可能等于2,6或8。a+b-1是9的倍数。若a=2,则b=8,此时N=2889,N-1=2888是8的倍数,与(2)矛盾。若a=1,则b=0或9,
38、此时N=1089或1989。当N1089时,N是27的倍数与(1)矛盾。经验算,仅1989符合题意。所以这个四位数是1989。6是。在等式的两边同时乘以1332!123 1332,由于1999是质数,且13321999,故在1332!中没有一个大于1的约数能整除1999,因此只有P能被1999整除。7不会。解:将这串数按奇偶性写出来是:1986偶奇奇偶偶偶奇奇偶容易看出,其中每连续五个数字中有两奇三偶,而且三个偶数是连在一起的,故在这一串数字中不会出现连续四个数,恰好是1,9,9,8。82000000。解:每一个(xnn)变成普通减法后是将xn和n中较大的一个减较小的一个,故在x1,x2,x2
39、000,1,2, 2000这22000个数中有2000个是被减数,有2000个是减数,我们要使上式的结果最大,就应该使较大的数成为被减数,较小的数成为减数。于是在每一个(xnn)中,大于999的两个数不能排在一起,小于 999的两个数也不能排在一起。取x1=2000,x2=1999,x2000=1就可以得到这个最大值: 2(2000-1)+(1999-2)+(1001-1000 2(2000-1000)+(1999-999)+(1001-1)第3讲 图形与面积一、直线图形的面积在小学数学中我们学习了几种简单图形的面积计算方法,数学竞赛中的面积问题不但具有直观性,而且变换精巧,妙趣横生,对开发智
40、力、发展能力非常有益。图形的面积是图形所占平面部分的大小的度量。它有如下两条性质:1两个可以完全重合的图形的面积相等;2图形被分成若干部分时,各部分面积之和等于图形的面积。对图形面积的计算,一些主要的面积公式应当熟记。如:正方形面积=边长边长;矩形面积=长宽;平行四边形面积=底高;三角形面积=底高2;梯形面积=(上底+下底)高2。此外,以下事实也非常有用,它对提高解题速度非常有益。1等腰三角形底边上的高线平分三角形面积;2三角形一边上的中线平分这个三角形的面积;3平行四边形的对角线平分它的面积;4等底等高的两个三角形面积相等。解决图形面积的主要方法有:1观察图形,分析图形,找出图形中所包含的基
41、本图形;2对某些图形,在保持其面积不变的条件下改变其形状或位置(叫做等积变形);3作出适当的辅助线,铺路搭桥,沟通联系;4把图形进行割补(叫做割补法)。例1 你会用几种不同的方法把一个三角形的面积平均分成4等份吗?解:最容易想到的是将ABC的底边4等分,如左下图构成4个小三角形,面积都为原来的三角形面积的。另外,先将三角形ABC的面积2等分(如右上图),即取BC的中点D,连接AD,则SABD=SADC,然后再将这两个小三角形分别2等分,分得的4个小三角形各自的面积为原来大三角形面积的。还有许多方法,如下面的三种。请你再想出几种不同的方法。例2 右图中每个小方格面积都是1cm2,那么六边形ABC
42、DEF的面积是多少平方厘米?分析:解决这类问题常用割补法,把图形分成几个简单的容易求出面积的图形,分别求出面积。也可以求出六边形外空白处的面积,从总面积中减去空白处的面积,就是六边形的面积。解法1:把六边形分成6块:ABC,AGF,PEF,EKD,CDH和正方形GHKP。用S表示三角形面积,如用SABC表示ABC的面积。故六边形ABCDEF的面积等于6+2+1+4+9=说明:当某些图形的面积不容易直接计算时,可以把这个图形分成几个部分,计算各部分的面积,然后相加,也就是说,可以化整为零。解法2:先求出大正方形MNRQ的面积为66=36(cm2)。说明:当某些图形的面积不易直接计算时,可以先求出
43、一个比它更大的图形的面积,再减去比原图形多的那些(个)图形的面积,也就是说,先多算一点,再把多算的部分减去。解法3:六边形面积等于SABC+S梯形ACDF-SDEF=62+(3+6)4-31=6+18-1=说明:“横看成岭侧成峰,远近高低各不同”,从不同的角度去观察同一个图形,会对图形产生不同的认识。一种新的认识的产生往往会伴随着一种新的解法。做题时多想一想,解法就会多起来,这对锻炼我们的观察能力与思考能力大有益处。例3 如下图所示,BD,CF将长方形ABCD分成4块,DEF的面积是4cm2,CED的面积是6cm2。问:四边形ABEF的面积是多少平方厘米?解:如下图,连结BF。则BDF与CFD
44、面积相等,减去共同的部分DEF,可得BEF与CED面积相等,等于6cm2。四边形ABEF的面积等于SABD-SDEF=SBDC-SDEF=SBCE+SCDE-SDEF=9+6-4=11(cm2)。问:两块红色图形的面积和与两块蓝色图形的面积和,哪个大?分析:只需比较ACE与BDF面积的大小。因为ACE与BDF的高相等(都是CD),所以只需比较两个三角形的底AE与BF的大小。因为ACE与BDF高相等,所以SACESBDF。减去中间空白的小四边形面积,推知两块红色图形的面积和大于两块蓝色图形的面积和。例5 在四边形ABCD中(见左下图),线段BC长6cm,ABC为直角,BCD为135,而且点A到边CD的垂线段AE的长为12cm,线段ED的长为5cm,求四边形ABCD的面积。解:延长AB,DC相交于F(见右上图),则BCF=45,FBC=90,从而BFC=45。因为BFC=BCF,所以BF=BC=