(数学)中考数学二次函数解答题压轴题提高专题练习附答案解析.doc

上传人(卖家):刘殿科 文档编号:5892835 上传时间:2023-05-14 格式:DOC 页数:24 大小:1.42MB
下载 相关 举报
(数学)中考数学二次函数解答题压轴题提高专题练习附答案解析.doc_第1页
第1页 / 共24页
(数学)中考数学二次函数解答题压轴题提高专题练习附答案解析.doc_第2页
第2页 / 共24页
(数学)中考数学二次函数解答题压轴题提高专题练习附答案解析.doc_第3页
第3页 / 共24页
(数学)中考数学二次函数解答题压轴题提高专题练习附答案解析.doc_第4页
第4页 / 共24页
(数学)中考数学二次函数解答题压轴题提高专题练习附答案解析.doc_第5页
第5页 / 共24页
点击查看更多>>
资源描述

1、一、二次函数 真题与模拟题分类汇编(难题易错题)1如图:在平面直角坐标系中,直线l:y=x与x轴交于点A,经过点A的抛物线y=ax23x+c的对称轴是x=(1)求抛物线的解析式;(2)平移直线l经过原点O,得到直线m,点P是直线m上任意一点,PBx轴于点B,PCy轴于点C,若点E在线段OB上,点F在线段OC的延长线上,连接PE,PF,且PE=3PF求证:PEPF;(3)若(2)中的点P坐标为(6,2),点E是x轴上的点,点F是y轴上的点,当PEPF时,抛物线上是否存在点Q,使四边形PEQF是矩形?如果存在,请求出点Q的坐标,如果不存在,请说明理由【答案】(1)抛物线的解析式为y=x23x4;(

2、2)证明见解析;(3)点Q的坐标为(2,6)或(2,6)【解析】【分析】(1)先求得点A的坐标,然后依据抛物线过点A,对称轴是x=列出关于a、c的方程组求解即可;(2)设P(3a,a),则PC=3a,PB=a,然后再证明FPC=EPB,最后通过等量代换进行证明即可;(3)设E(a,0),然后用含a的式子表示BE的长,从而可得到CF的长,于是可得到点F的坐标,然后依据中点坐标公式可得到,从而可求得点Q的坐标(用含a的式子表示),最后,将点Q的坐标代入抛物线的解析式求得a的值即可【详解】(1)当y=0时,解得x=4,即A(4,0),抛物线过点A,对称轴是x=,得,解得,抛物线的解析式为y=x23x

3、4;(2)平移直线l经过原点O,得到直线m,直线m的解析式为y=x点P是直线1上任意一点,设P(3a,a),则PC=3a,PB=a又PE=3PF,FPC=EPBCPE+EPB=90,FPC+CPE=90,FPPE(3)如图所示,点E在点B的左侧时,设E(a,0),则BE=6aCF=3BE=183a,OF=203aF(0,203a)PEQF为矩形,Qx+6=0+a,Qy+2=203a+0,Qx=a6,Qy=183a将点Q的坐标代入抛物线的解析式得:183a=(a6)23(a6)4,解得:a=4或a=8(舍去)Q(2,6)如下图所示:当点E在点B的右侧时,设E(a,0),则BE=a6CF=3BE=

4、3a18,OF=3a20F(0,203a)PEQF为矩形,Qx+6=0+a,Qy+2=203a+0,Qx=a6,Qy=183a将点Q的坐标代入抛物线的解析式得:183a=(a6)23(a6)4,解得:a=8或a=4(舍去)Q(2,6)综上所述,点Q的坐标为(2,6)或(2,6)【点睛】本题主要考查的是二次函数的综合应用,解答本题主要应用了矩形的性质、待定系数法求二次函数的解析式、中点坐标公式,用含a的式子表示点Q的坐标是解题的关键2如图,已知二次函数y=ax2+bx+c的图象与x轴相交于A(1,0),B(3,0)两点,与y轴相交于点C(0,3)(1)求这个二次函数的表达式;(2)若P是第四象限

5、内这个二次函数的图象上任意一点,PHx轴于点H,与BC交于点M,连接PC求线段PM的最大值;当PCM是以PM为一腰的等腰三角形时,求点P的坐标【答案】(1)二次函数的表达式y=x22x3;(2)PM最大=;P(2,3)或(3-,24)【解析】【分析】(1)根据待定系数法,可得答案;(2)根据平行于y轴直线上两点间的距离是较大的纵坐标减较小的纵坐标,可得二次函数,根据二次函数的性质,可得答案;根据等腰三角形的定义,可得方程,根据解方程,可得答案【详解】(1)将A,B,C代入函数解析式,得,解得,这个二次函数的表达式y=x22x3;(2)设BC的解析式为y=kx+b,将B,C的坐标代入函数解析式,

6、得,解得,BC的解析式为y=x3,设M(n,n3),P(n,n22n3),PM=(n3)(n22n3)=n2+3n=(n)2+,当n=时,PM最大=;当PM=PC时,(n2+3n)2=n2+(n22n3+3)2,解得n1=0(不符合题意,舍),n2=2,n22n3=-3,P(2,-3);当PM=MC时,(n2+3n)2=n2+(n3+3)2,解得n1=0(不符合题意,舍),n2=3+(不符合题意,舍),n3=3-,n22n3=2-4,P(3-,2-4);综上所述:P(2,3)或(3-,24)【点睛】本题考查了二次函数的综合题,涉及到待定系数法、二次函数的最值、等腰三角形等知识,综合性较强,解题

7、的关键是认真分析,弄清解题的思路有方法.3函数的图象记为,函数的图象记为,其中为常数,与合起来的图象记为.()若过点时,求的值;()若的顶点在直线上,求的值;()设在上最高点的纵坐标为,当时,求的取值范围.【答案】();();().【解析】【分析】()将点C的坐标代入的解析式即可求出m的值;()先求出抛物线的顶点坐标,再根据顶点在直线上得出关于m的方程,解之即可()先求出抛物线的顶点坐标,结合()抛物线的顶点坐标,和x的取值范围,分三种情形讨论求解即可;【详解】解:()将点代入的解析式,解得()抛物线的顶点坐标为,令,得,()抛物线的顶点,抛物线的顶点,当时,最高点是抛物线G1的顶点,解得当时

8、,G1中(2,2m-1)是最高点,2m-12m-1,解得当时,G2中(-4,4m-9)是最高点,4m-94m-9,解得.综上所述,即为所求.【点睛】本题考查二次函数综合题,待定系数法、不等式组等知识,解题的关键是理解题意,灵活运用所学知识解决问题,学会用分类讨论的思想思考问题,利用数形结合的思想解决问题,属于中考压轴题4已知,抛物线y=x2+2mx(m为常数且m0) (1)判断该抛物线与x轴的交点个数,并说明理由 (2)若点A(-n+5,0),B(n-1,0)在该抛物线上,点M为抛物线的顶点,求ABM的面积 (3)若点(2,p),(3,g),(4,r)均在该抛物线上,且pg-2.5【解析】【分

9、析】(1)首先算出根的判别式b2-4ac的值,根据偶数次幂的非负性,判断该值一定大于0,从而根据抛物线与x轴交点个数与根的判别式的关系即可得出结论;(2)根据抛物线的对称性及A,B两点的坐标特点求出抛物线的对称轴直线为x=2.从而再根据抛物线对称轴直线公式建立方程,求解算出m的值,进而求出抛物线的解析式,得出A,B,M三点的坐标,根据三角形的面积计算方法,即可算出答案;(3)方法一(图象法):根据抛物线的对称轴直线及开口方向判断出当对称轴在直线x=3的右边时,显然不符合题目条件;当对称轴在直线x=2的左边时,显然符合题目条件(如图2),从而列出不等式得出m的取值范围;当对称轴在直线x=2和x=

10、3之间时,满足3-(-m)-m-2即可(如图3),再列出不等式得出m的取值范围,综上所述,求出m的取值范围;方法二(代数法):将三点的横坐标分贝代入抛物线的解析式,用含m的式子表示出p,g,r,再代入 pg0抛物线与x轴有2个交点(2)解:点A(-n+5,0),B(n-1,0)在抛物线上抛物线的对称轴x= =2,即m=-2抛物线的表达式为y=x2-4x点A(0,0),点B(4,0)或点A(4,0),点B(0,0),点M(2,-4)ABM的面积为44=8(3)解:方法一(图象法):抛物线y=x2+2mx的对称轴为x=-m,开口向上。当对称轴在直线x=3的右边时,显然不符合题目条件(如图1)当对称

11、轴在直线x=2的左边时,显然符合题目条件(如图2)此时,-m-2当对称轴在直线x=2和x=3之间时,满足3-(-m)-m-2即可(如图3)即m-2.5综上所述,m的取值范围m-2.5方法二(代数法):由已知得,p=4+4m,g=9+6m,r=16+8mpqr, 4+4m9+6m0时,函数图像与x轴有两个交点。当=b2-4ac=0时,函数图像与x轴只有一个交点。=b2-4ac0)个单位,平移后的直线与抛物线交于M,N两点(点M在y轴的右侧),当AMN为直角三角形时,求t的值【答案】(1);(2)BCD为直角三角形,理由见解析;(3)当AMN为直角三角形时,t的值为1或4【解析】【分析】(1)根据

12、点A、B的坐标,利用待定系数法即可求出二次函数解析式;(2)利用配方法及二次函数图象上点的坐标特征,可求出点C、D的坐标,利用两点间的距离公式可求出CD、BD、BC的长,由勾股定理的逆定理可证出BCD为直角三角形;(3)根据点B、C的坐标,利用待定系数法可求出直线BC的解析式,进而可找出平移后直线的解析式,联立两函数解析式成方程组,通过解方程组可找出点M、N的坐标,利用两点间的距离公式可求出AM2、AN2、MN2的值,分别令三个角为直角,利用勾股定理可得出关于t的无理方程,解之即可得出结论【详解】(1)将、代入,得:,解得:,此二次函数解析式为(2)为直角三角形,理由如下:,顶点的坐标为当时,

13、点的坐标为点的坐标为,为直角三角形(3)设直线的解析式为,将,代入,得:,解得:,直线的解析式为,将直线向上平移个单位得到的直线的解析式为联立新直线与抛物线的解析式成方程组,得:,解得:,点的坐标为,点的坐标为,点的坐标为,为直角三角形,分三种情况考虑:当时,有,即,整理,得:,解得:,(不合题意,舍去);当时,有,即,整理,得:,解得:,(不合题意,舍去);当时,有,即,整理,得:,该方程无解(或解均为增解)综上所述:当为直角三角形时,的值为1或4【点睛】本题考查了待定系数法求二次函数解析式、待定系数法求一次函数解析式、二次函数图象上点的坐标特征、勾股定理以及勾股定理的逆定理,解题的关键是:

14、(1)根据点的坐标,利用待定系数法求出二次函数解析式;(2)利用两点间的距离公式结合勾股定理的逆定理找出BC2+BD2=CD2;(3)分MAN=90、AMN=90及ANM=90三种情况考虑9空地上有一段长为a米的旧墙MN,某人利用旧墙和木栏围成一个矩形菜园ABCD,已知木栏总长为100米(1)已知a=20,矩形菜园的一边靠墙,另三边一共用了100米木栏,且围成的矩形菜园面积为450平方米如图1,求所利用旧墙AD的长;(2)已知050,且空地足够大,如图2请你合理利用旧墙及所给木栏设计一个方案,使得所围成的矩形菜园ABCD的面积最大,并求面积的最大值【答案】(1)利用旧墙AD的长为10米(2)见

15、解析.【解析】【分析】(1)按题意设出AD,表示AB构成方程;(2)根据旧墙长度a和AD长度表示矩形菜园长和宽,注意分类讨论s与菜园边长之间的数量关系【详解】(1)设AD=x米,则AB=米依题意得,450解得x1=10,x2=90a=20,且xax=90舍去利用旧墙AD的长为10米(2)设AD=x米,矩形ABCD的面积为S平方米如果按图一方案围成矩形菜园,依题意得:S=,0xa0a50xa50时,S随x的增大而增大当x=a时,S最大=50a-a2如按图2方案围成矩形菜园,依题意得S=,ax50+当a25+50时,即0a时,则x=25+时,S最大=(25+)2=,当25+a,即a50时,S随x的

16、增大而减小x=a时,S最大=,综合,当0a时,-()=0,此时,按图2方案围成矩形菜园面积最大,最大面积为平方米当a50时,两种方案围成的矩形菜园面积最大值相等当0a时,围成长和宽均为(25+)米的矩形菜园面积最大,最大面积为平方米;当a50时,围成长为a米,宽为(50-)米的矩形菜园面积最大,最大面积为()平方米【点睛】本题以实际应用为背景,考查了一元二次方程与二次函数最值的讨论,解得时注意分类讨论变量大小关系10如图1,四边形是矩形,点的坐标为,点的坐标为.点从点出发,沿以每秒1个单位长度的速度向点运动,同时点从点出发,沿以每秒2个单位长度的速度向点运动,当点与点重合时运动停止.设运动时间

17、为秒.(1)当时,线段的中点坐标为_;(2)当与相似时,求的值;(3)当时,抛物线经过、两点,与轴交于点,抛物线的顶点为,如图2所示.问该抛物线上是否存在点,使,若存在,求出所有满足条件的点坐标;若不存在,说明理由.【答案】(1)的中点坐标是;(2)或;(3),.【解析】分析:(1)先根据时间t=2,和速度可得动点P和Q的路程OP和AQ的长,再根据中点坐标公式可得结论;(2)根据矩形的性质得:B=PAQ=90,所以当CBQ与PAQ相似时,存在两种情况:当PAQQBC时,当PAQCBQ时,分别列方程可得t的值;(3)根据t=1求抛物线的解析式,根据Q(3,2),M(0,2),可得MQx轴,KM=

18、KQ,KEMQ,画出符合条件的点D,证明KEQQMH,列比例式可得点D的坐标,同理根据对称可得另一个点D详解:(1)如图1,点A的坐标为(3,0),OA=3,当t=2时,OP=t=2,AQ=2t=4,P(2,0),Q(3,4),线段PQ的中点坐标为:(,),即(,2);故答案为:(,2);(2)如图1,四边形OABC是矩形,B=PAQ=90当CBQ与PAQ相似时,存在两种情况:当PAQQBC时,4t2-15t+9=0,(t-3)(t-)=0,t1=3(舍),t2=,当PAQCBQ时,t2-9t+9=0,t=,0t6,7,x=不符合题意,舍去,综上所述,当CBQ与PAQ相似时,t的值是或;(3)

19、当t=1时,P(1,0),Q(3,2),把P(1,0),Q(3,2)代入抛物线y=x2+bx+c中得:,解得:,抛物线:y=x2-3x+2=(x-)2-,顶点k(,-),Q(3,2),M(0,2),MQx轴,作抛物线对称轴,交MQ于E,KM=KQ,KEMQ,MKE=QKE=MKQ,如图2,MQD=MKQ=QKE,设DQ交y轴于H,HMQ=QEK=90,KEQQMH,MH=2,H(0,4),易得HQ的解析式为:y=-x+4,则,x2-3x+2=-x+4,解得:x1=3(舍),x2=-,D(-,);同理,在M的下方,y轴上存在点H,如图3,使HQM=MKQ=QKE,由对称性得:H(0,0),易得OQ的解析式:y=x,则,x2-3x+2=x,解得:x1=3(舍),x2=,D(,);综上所述,点D的坐标为:D(-,)或(,)点睛:本题是二次函数与三角形相似的综合问题,主要考查相似三角形的判定和性质的综合应用,三角形和四边形的面积,二次函数的最值问题的应用,函数的交点等知识,本题比较复杂,注意用t表示出线段长度,再利用相似即可找到线段之间的关系,代入可解决问题

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 初中 > 数学 > 中考复习 > 二轮专题
版权提示 | 免责声明

1,本文((数学)中考数学二次函数解答题压轴题提高专题练习附答案解析.doc)为本站会员(刘殿科)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!


侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|