最新浙江省嘉兴市初三中考数学试卷-.doc

上传人(卖家):刘殿科 文档编号:6049538 上传时间:2023-05-24 格式:DOC 页数:26 大小:924KB
下载 相关 举报
最新浙江省嘉兴市初三中考数学试卷-.doc_第1页
第1页 / 共26页
最新浙江省嘉兴市初三中考数学试卷-.doc_第2页
第2页 / 共26页
最新浙江省嘉兴市初三中考数学试卷-.doc_第3页
第3页 / 共26页
最新浙江省嘉兴市初三中考数学试卷-.doc_第4页
第4页 / 共26页
最新浙江省嘉兴市初三中考数学试卷-.doc_第5页
第5页 / 共26页
点击查看更多>>
资源描述

1、浙江省嘉兴市中考数学试卷 一、选择题:本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1(3分)2的绝对值是()A2B2CD2(3分)长度分别为2,7,x的三条线段能组成一个三角形,x的值可以是()A4B5C6D93(3分)已知一组数据a,b,c的平均数为5,方差为4,那么数据a2,b2,c2的平均数和方差分别是()A3,2B3,4C5,2D5,44(3分)一个立方体的表面展开图如图所示,将其折叠成立方体后,“你”字对面的字是()A中B考C顺D利5(3分)红红和娜娜按如图所示的规则玩一次“锤子、剪刀、布”游戏,下列命题中错误的是()A红红不是胜就是

2、输,所以红红胜的概率为B红红胜或娜娜胜的概率相等C两人出相同手势的概率为D娜娜胜的概率和两人出相同手势的概率一样6(3分)若二元一次方程组的解为,则ab=()A1B3CD7(3分)如图,在平面直角坐标系xOy中,已知点A(,0),B(1,1)若平移点A到点C,使以点O,A,C,B为顶点的四边形是菱形,则正确的平移方法是()A向左平移1个单位,再向下平移1个单位B向左平移个单位,再向上平移1个单位C向右平移个单位,再向上平移1个单位D向右平移1个单位,再向上平移1个单位8(3分)用配方法解方程x2+2x1=0时,配方结果正确的是()A(x+2)2=2B(x+1)2=2C(x+2)2=3D(x+1

3、)2=39(3分)一张矩形纸片ABCD,已知AB=3,AD=2,小明按如图步骤折叠纸片,则线段DG长为()ABC1D210(3分)下列关于函数y=x26x+10的四个命题:当x=0时,y有最小值10;n为任意实数,x=3+n时的函数值大于x=3n时的函数值;若n3,且n是整数,当nxn+1时,y的整数值有(2n4)个;若函数图象过点(a,y0)和(b,y0+1),其中a0,b0,则ab其中真命题的序号是()ABCD二、填空题(每题4分,满分24分,将答案填在答题纸上)11(4分)分解因式:abb2= 12(4分)若分式的值为0,则x的值为 13(4分)如图,小明自制一块乒乓球拍,正面是半径为8

4、cm的O,=90,弓形ACB(阴影部分)粘贴胶皮,则胶皮面积为 14(4分)七(1)班举行投篮比赛,每人投5球如图是全班学生投进球数的扇形统计图,则投进球数的众数是 15(4分)如图,把n个边长为1的正方形拼接成一排,求得tanBA1C=1,tanBA2C=,tanBA3C=,计算tanBA4C= ,按此规律,写出tanBAnC= (用含n的代数式表示)16(4分)一副含30和45角的三角板ABC和DEF叠合在一起,边BC与EF重合,BC=EF=12cm(如图1),点G为边BC(EF)的中点,边FD与AB相交于点H,此时线段BH的长是 现将三角板DEF绕点G按顺时针方向旋转(如图2),在CGF

5、从0到60的变化过程中,点H相应移动的路径长共为 (结果保留根号)三、解答题(本大题共8小题,共66分.解答应写出文字说明、证明过程或演算步骤.)17(6分)(1)计算:()221(4);(2)化简:(m+2)(m2)3m18(6分)小明解不等式1的过程如图请指出他解答过程中错误步骤的序号,并写出正确的解答过程19(6分)如图,已知ABC,B=40(1)在图中,用尺规作出ABC的内切圆O,并标出O与边AB,BC,AC的切点D,E,F(保留痕迹,不必写作法);(2)连接EF,DF,求EFD的度数20(8分)如图,一次函数y=k1x+b(k10)与反比例函数y=(k20)的图象交于点A(1,2),

6、B(m,1)(1)求这两个函数的表达式;(2)在x轴上是否存在点P(n,0)(n0),使ABP为等腰三角形?若存在,求n的值;若不存在,说明理由21(8分)小明为了了解气温对用电量的影响,对去年自己家的每月用电量和当地气温进行了统计当地去年每月的平均气温如图1,小明家去年月用电量如图2根据统计图,回答下面的问题:(1)当地去年月平均气温的最高值、最低值各为多少?相应月份的用电量各是多少?(2)请简单描述月用电量与气温之间的关系;(3)假设去年小明家用电量是所在社区家庭年用电量的中位数,据此他能否预测今年该社区的年用电量?请简要说明理由22(10分)如图是小强洗漱时的侧面示意图,洗漱台(矩形AB

7、CD)靠墙摆放,高AD=80cm,宽AB=48cm,小强身高166cm,下半身FG=100cm,洗漱时下半身与地面成80(FGK=80),身体前倾成125(EFG=125),脚与洗漱台距离GC=15cm(点D,C,G,K在同一直线上)(1)此时小强头部E点与地面DK相距多少?(2)小强希望他的头部E恰好在洗漱盆AB的中点O的正上方,他应向前或后退多少?(sin800.98,cos800.18,1.41,结果精确到0.1)23(10分)如图,AM是ABC的中线,D是线段AM上一点(不与点A重合)DEAB交AC于点F,CEAM,连结AE(1)如图1,当点D与M重合时,求证:四边形ABDE是平行四边

8、形;(2)如图2,当点D不与M重合时,(1)中的结论还成立吗?请说明理由(3)如图3,延长BD交AC于点H,若BHAC,且BH=AM求CAM的度数;当FH=,DM=4时,求DH的长24(12分)如图,某日的钱塘江观潮信息如表:按上述信息,小红将“交叉潮”形成后潮头与乙地之间的距离s(千米)与时间t(分钟)的函数关系用图3表示,其中:“11:40时甲地交叉潮的潮头离乙地12千米”记为点A(0,12),点B坐标为(m,0),曲线BC可用二次函数s=t2+bt+c(b,c是常数)刻画(1)求m的值,并求出潮头从甲地到乙地的速度;(2)11:59时,小红骑单车从乙地出发,沿江边公路以0.48千米/分的

9、速度往甲地方向去看潮,问她几分钟后与潮头相遇?(3)相遇后,小红立即调转车头,沿江边公路按潮头速度与潮头并行,但潮头过乙地后均匀加速,而单车最高速度为0.48千米/分,小红逐渐落后,问小红与潮头相遇到落后潮头1.8千米共需多长时间?(潮水加速阶段速度v=v0+(t30),v0是加速前的速度)浙江省嘉兴市中考数学试卷参考答案与试题解析一、选择题:本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1(3分)(随州)2的绝对值是()A2B2CD【解答】解:2的绝对值是2,即|2|=2故选:A2(3分)(舟山)长度分别为2,7,x的三条线段能组成一个三角形,

10、x的值可以是()A4B5C6D9【解答】解:由三角形三边关系定理得72x7+2,即5x9因此,本题的第三边应满足5x9,把各项代入不等式符合的即为答案4,5,9都不符合不等式5x9,只有6符合不等式,故选:C3(3分)(舟山)已知一组数据a,b,c的平均数为5,方差为4,那么数据a2,b2,c2的平均数和方差分别是()A3,2B3,4C5,2D5,4【解答】解:数据a,b,c的平均数为5,(a+b+c)=5,(a2+b2+c2)=(a+b+c)2=52=3,数据a2,b2,c2的平均数是3;数据a,b,c的方差为4,(a5)2+(b5)2+(c5)2=4,a2,b2,c2的方差=(a23)2+

11、(b23)2+(c23)2=(a5)2+(b5)2+(c5)2=4故选B4(3分)(舟山)一个立方体的表面展开图如图所示,将其折叠成立方体后,“你”字对面的字是()A中B考C顺D利【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“祝”与“考”是相对面,“你”与“顺”是相对面,“中”与“立”是相对面故选C5(3分)(舟山)红红和娜娜按如图所示的规则玩一次“锤子、剪刀、布”游戏,下列命题中错误的是()A红红不是胜就是输,所以红红胜的概率为B红红胜或娜娜胜的概率相等C两人出相同手势的概率为D娜娜胜的概率和两人出相同手势的概率一样【解答】解:红红和娜娜玩“锤子、剪刀、布”游戏,所有可能

12、出现的结果列表如下: 红红娜娜锤子剪刀布锤子(锤子,锤子)(锤子,剪刀)(锤子,布)剪刀(剪刀,锤子)(剪刀,剪刀)(剪刀,布)布(布,锤子)(布,剪刀)(布,布)由表格可知,共有9种等可能情况其中平局的有3种:(锤子,锤子)、(剪刀,剪刀)、(布,布)因此,红红和娜娜两人出相同手势的概率为,两人获胜的概率都为,红红不是胜就是输,所以红红胜的概率为,错误,故选项A符合题意,故选项B,C,D不合题意;故选:A6(3分)(嘉兴)若二元一次方程组的解为,则ab=()A1B3CD【解答】解:x+y=3,3x5y=4,两式相加可得:(x+y)+(3x5y)=3+4,4x4y=7,xy=,x=a,y=b,

13、ab=xy=故选(D)7(3分)(嘉兴)如图,在平面直角坐标系xOy中,已知点A(,0),B(1,1)若平移点A到点C,使以点O,A,C,B为顶点的四边形是菱形,则正确的平移方法是()A向左平移1个单位,再向下平移1个单位B向左平移个单位,再向上平移1个单位C向右平移个单位,再向上平移1个单位D向右平移1个单位,再向上平移1个单位【解答】解:过B作射线BCOA,在BC上截取BC=OA,则四边形OACB是平行四边形,过B作BHx轴于H,B(1,1),OB=,A(,0),C(1+,1)OA=OB,则四边形OACB是菱形,平移点A到点C,向右平移1个单位,再向上平移1个单位而得到,故选D8(3分)(

14、舟山)用配方法解方程x2+2x1=0时,配方结果正确的是()A(x+2)2=2B(x+1)2=2C(x+2)2=3D(x+1)2=3【解答】解:x2+2x1=0,x2+2x+1=2,(x+1)2=2故选:B9(3分)(舟山)一张矩形纸片ABCD,已知AB=3,AD=2,小明按如图步骤折叠纸片,则线段DG长为()ABC1D2【解答】解:AB=3,AD=2,DA=2,CA=1,DC=1,D=45,DG=DC=,故选A10(3分)(嘉兴)下列关于函数y=x26x+10的四个命题:当x=0时,y有最小值10;n为任意实数,x=3+n时的函数值大于x=3n时的函数值;若n3,且n是整数,当nxn+1时,

15、y的整数值有(2n4)个;若函数图象过点(a,y0)和(b,y0+1),其中a0,b0,则ab其中真命题的序号是()ABCD【解答】解:y=x26x+10=(x3)2+1,当x=3时,y有最小值1,故错误;当x=3+n时,y=(3+n)26(3+n)+10,当x=3n时,y=(n3)26(n3)+10,(3+n)26(3+n)+10(n3)26(n3)+10=0,n为任意实数,x=3+n时的函数值等于x=3n时的函数值,故错误;抛物线y=x26x+10的对称轴为x=3,a=10,当x3时,y随x的增大而增大,当x=n+1时,y=(n+1)26(n+1)+10,当x=n时,y=n26n+10,(

16、n+1)26(n+1)+10n26n+10=2n5,n是整数,2n5是整数,故正确;抛物线y=x26x+10的对称轴为x=3,10,当x3时,y随x的增大而增大,x0时,y随x的增大而减小,y0+1y0,当0a3,0b3时,ab,当a3,b3时,ab,当0a3,b3时,ab,故是假命题故选C二、填空题(每题4分,满分24分,将答案填在答题纸上)11(4分)(淮安)分解因式:abb2=b(ab)【解答】解:原式=b(ab),故答案为:b(ab)12(4分)(舟山)若分式的值为0,则x的值为2【解答】解:由分式的值为零的条件得,由2x4=0,得x=2,由x+10,得x1综上,得x=2,即x的值为2

17、故答案为:213(4分)(舟山)如图,小明自制一块乒乓球拍,正面是半径为8cm的O,=90,弓形ACB(阴影部分)粘贴胶皮,则胶皮面积为(32+48)cm2【解答】解:连接OA、OB,=90,AOB=90,SAOB=88=32,扇形ACB(阴影部分)=48,则弓形ACB胶皮面积为(32+48)cm2,故答案为:(32+48)cm214(4分)(嘉兴)七(1)班举行投篮比赛,每人投5球如图是全班学生投进球数的扇形统计图,则投进球数的众数是3球【解答】解:由图可知,3球所占的比例最大,投进球数的众数是3球故答案为:3球15(4分)(舟山)如图,把n个边长为1的正方形拼接成一排,求得tanBA1C=

18、1,tanBA2C=,tanBA3C=,计算tanBA4C=,按此规律,写出tanBAnC=(用含n的代数式表示)【解答】解:作CHBA4于H,由勾股定理得,BA4=,A4C=,BA4C的面积=42=,CH=,解得,CH=,则A4H=,tanBA4C=,1=121+1,3=222+1,7=323+1,tanBAnC=,故答案为:;16(4分)(嘉兴)一副含30和45角的三角板ABC和DEF叠合在一起,边BC与EF重合,BC=EF=12cm(如图1),点G为边BC(EF)的中点,边FD与AB相交于点H,此时线段BH的长是1212现将三角板DEF绕点G按顺时针方向旋转(如图2),在CGF从0到60

19、的变化过程中,点H相应移动的路径长共为1218(结果保留根号)【解答】解:如图1中,作HMBC于M,HNAC于N,则四边形HMCN是正方形,设边长为a在RtABC中,ABC=30,BC=12,AB=8,在RtBHM中,BH=2HM=2a,在RtAHN中,AH=a,2a+=8,a=66,BH=2a=1212如图2中,当DGAB时,易证GH1DF,此时BH1的值最小,易知BH1=BK+KH1=3+3,HH1=BHBH1=915,当旋转角为60时,F与H2重合,易知BH2=6,观察图象可知,在CGF从0到60的变化过程中,点H相应移动的路径长=2HH1+HH2=1830+6(1212)=1218故答

20、案分别为1212,1218三、解答题(本大题共8小题,共66分.解答应写出文字说明、证明过程或演算步骤.)17(6分)(舟山)(1)计算:()221(4);(2)化简:(m+2)(m2)3m【解答】解:(1)原式=3(4)=3+2=5;(2)原式=m24m2=418(6分)(舟山)小明解不等式1的过程如图请指出他解答过程中错误步骤的序号,并写出正确的解答过程【解答】解:错误的是,正确解答过程如下:去分母,得3(1+x)2(2x+1)6,去括号,得3+3x4x26,移项,得3x4x63+2,合并同类项,得x5,两边都除以1,得x519(6分)(舟山)如图,已知ABC,B=40(1)在图中,用尺规

21、作出ABC的内切圆O,并标出O与边AB,BC,AC的切点D,E,F(保留痕迹,不必写作法);(2)连接EF,DF,求EFD的度数【解答】解:(1)如图1,O即为所求(2)如图2,连接OD,OE,ODAB,OEBC,ODB=OEB=90,B=40,DOE=140,EFD=7020(8分)(舟山)如图,一次函数y=k1x+b(k10)与反比例函数y=(k20)的图象交于点A(1,2),B(m,1)(1)求这两个函数的表达式;(2)在x轴上是否存在点P(n,0)(n0),使ABP为等腰三角形?若存在,求n的值;若不存在,说明理由【解答】解:(1)把A(1,2)代入y=,得到k2=2,反比例函数的解析

22、式为y=B(m,1)在Y=上,m=2,由题意,解得,一次函数的解析式为y=x+1(2)A(1,2),B(2,1),AB=3,当PA=PB时,(n+1)2+4=(n2)2+1,n=0,n0,n=0不合题意舍弃当AP=AB时,22+(n+1)2=(3)2,n0,n=1+当BP=BA时,12+(n2)2=(3)2,n0,n=2+综上所述,n=1+或2+21(8分)(舟山)小明为了了解气温对用电量的影响,对去年自己家的每月用电量和当地气温进行了统计当地去年每月的平均气温如图1,小明家去年月用电量如图2根据统计图,回答下面的问题:(1)当地去年月平均气温的最高值、最低值各为多少?相应月份的用电量各是多少

23、?(2)请简单描述月用电量与气温之间的关系;(3)假设去年小明家用电量是所在社区家庭年用电量的中位数,据此他能否预测今年该社区的年用电量?请简要说明理由【解答】解:(1)由统计图可知:月平均气温最高值为30.6,最低气温为5.8;相应月份的用电量分别为124千瓦时和110千瓦时(2)当气温较高或较低时,用电量较多;当气温适宜时,用电量较少;(3)能,因为中位数刻画了中间水平22(10分)(舟山)如图是小强洗漱时的侧面示意图,洗漱台(矩形ABCD)靠墙摆放,高AD=80cm,宽AB=48cm,小强身高166cm,下半身FG=100cm,洗漱时下半身与地面成80(FGK=80),身体前倾成125(

24、EFG=125),脚与洗漱台距离GC=15cm(点D,C,G,K在同一直线上)(1)此时小强头部E点与地面DK相距多少?(2)小强希望他的头部E恰好在洗漱盆AB的中点O的正上方,他应向前或后退多少?(sin800.98,cos800.18,1.41,结果精确到0.1)【解答】解:(1)过点F作FNDK于N,过点E作EMFN于MEF+FG=166,FG=100,EF=66,FK=80,FN=100sin8098,EFG=125,EFM=18012510=45,FM=66cos45=3346.53,MN=FN+FM114.5,此时小强头部E点与地面DK相距约为144.5cm(2)过点E作EPAB于

25、点P,延长OB交MN于HAB=48,O为AB中点,AO=BO=24,EM=66sin4546.53,PH46.53,GN=100cos8018,CG=15,OH=24+15+18=57,OP=OHPH=5746.53=10.4710.5,他应向前10.5cm23(10分)(舟山)如图,AM是ABC的中线,D是线段AM上一点(不与点A重合)DEAB交AC于点F,CEAM,连结AE(1)如图1,当点D与M重合时,求证:四边形ABDE是平行四边形;(2)如图2,当点D不与M重合时,(1)中的结论还成立吗?请说明理由(3)如图3,延长BD交AC于点H,若BHAC,且BH=AM求CAM的度数;当FH=,

26、DM=4时,求DH的长【解答】(1)证明:如图1中,DEAB,EDC=ABM,CEAM,ECD=ADB,AM是ABC的中线,且D与M重合,BD=DC,ABDEDC,AB=ED,ABED,四边形ABDE是平行四边形(2)结论:成立理由如下:如图2中,过点M作MGDE交CE于GCEAM,四边形DMGE是平行四边形,ED=GM,且EDGM,由(1)可知AB=GM,ABGM,ABDE,AB=DE,四边形ABDE是平行四边形(3)如图3中,取线段HC的中点I,连接MI,BM=MC,MI是BHC的中位线,BH,MI=BH,BHAC,且BH=AMMI=AM,MIAC,CAM=30设DH=x,则AH=x,AD

27、=2x,AM=4+2x,BH=4+2x,四边形ABDE是平行四边形,DFAB,=,=,解得x=1+或1(舍弃),DH=1+24(12分)(嘉兴)如图,某日的钱塘江观潮信息如表:按上述信息,小红将“交叉潮”形成后潮头与乙地之间的距离s(千米)与时间t(分钟)的函数关系用图3表示,其中:“11:40时甲地交叉潮的潮头离乙地12千米”记为点A(0,12),点B坐标为(m,0),曲线BC可用二次函数s=t2+bt+c(b,c是常数)刻画(1)求m的值,并求出潮头从甲地到乙地的速度;(2)11:59时,小红骑单车从乙地出发,沿江边公路以0.48千米/分的速度往甲地方向去看潮,问她几分钟后与潮头相遇?(3

28、)相遇后,小红立即调转车头,沿江边公路按潮头速度与潮头并行,但潮头过乙地后均匀加速,而单车最高速度为0.48千米/分,小红逐渐落后,问小红与潮头相遇到落后潮头1.8千米共需多长时间?(潮水加速阶段速度v=v0+(t30),v0是加速前的速度)【解答】解:(1)由题意可知:m=30;B(30,0),潮头从甲地到乙地的速度为:千米/分钟;(2)潮头的速度为0.4千米/分钟,到11:59时,潮头已前进190.4=7.6千米,设小红出发x分钟与潮头相遇,0.4x+0.48x=127.6,x=5小红5分钟与潮头相遇,(3)把(30,0),C(55,15)代入s=t2+bt+c,解得:b=,c=,s=t2

29、v0=0.4,v=(t30)+,当潮头的速度达到单车最高速度0.48千米/分钟,此时v=0.48,0.48=(t30)+,t=35,当t=35时,s=t2=,从t=35分(12:15时)开始,潮头快于小红速度奔向丙地,小红逐渐落后,当小红仍以0.48千米/分的速度匀速追赶潮头设她离乙地的距离为s1,则s1与时间t的函数关系式为s1=0.48t+h(t35),当t=35时,s1=s=,代入可得:h=,s1=最后潮头与小红相距1.8千米时,即ss1=1.8,t2+=1.8解得:t=50或t=20(不符合题意,舍去),t=50,小红与潮头相遇后,按潮头速度与潮头并行到达乙地用时6分钟,共需要时间为6+5030=26分钟,小红与潮头相遇到潮头离她1.8千米外共需要26分钟,

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 初中 > 数学 > 中考复习 > 模拟试题
版权提示 | 免责声明

1,本文(最新浙江省嘉兴市初三中考数学试卷-.doc)为本站会员(刘殿科)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!


侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|