2022年青岛版数学八年级上《几何证明举例》立体课件2.ppt

上传人(卖家):ziliao2023 文档编号:6601293 上传时间:2023-07-23 格式:PPT 页数:33 大小:1.52MB
下载 相关 举报
2022年青岛版数学八年级上《几何证明举例》立体课件2.ppt_第1页
第1页 / 共33页
2022年青岛版数学八年级上《几何证明举例》立体课件2.ppt_第2页
第2页 / 共33页
2022年青岛版数学八年级上《几何证明举例》立体课件2.ppt_第3页
第3页 / 共33页
2022年青岛版数学八年级上《几何证明举例》立体课件2.ppt_第4页
第4页 / 共33页
2022年青岛版数学八年级上《几何证明举例》立体课件2.ppt_第5页
第5页 / 共33页
点击查看更多>>
资源描述

1、5.65.6几何证明举例几何证明举例2 21.1.进一步掌握证明的根本步骤和书写格式。进一步掌握证明的根本步骤和书写格式。2.2.能用能用“公理和公理和“已经证明的定理为已经证明的定理为依据,证明等腰三角形的性质定理和判定依据,证明等腰三角形的性质定理和判定定理。定理。学习目标学习目标复习回忆复习回忆1.1.什么叫等腰三角形?什么叫等腰三角形?2.2.根据本册第二章的学习你知道等根据本册第二章的学习你知道等腰三角形的哪些性质?腰三角形的哪些性质?3.3.这些性质你是怎样得到的?这些性质你是怎样得到的?这些这些性质都是真命题吗?你能用逻辑性质都是真命题吗?你能用逻辑推理的方法对它们进行证明吗?推

2、理的方法对它们进行证明吗?证明性质定理证明性质定理1 1:等腰三角形的两个底角相等:等腰三角形的两个底角相等 简称:等边对等角简称:等边对等角:如图:如图,在在ABCABC中中,AB=AC.,AB=AC.求证:求证:B=CB=C分析:常见辅助线做法分析:常见辅助线做法1 1作底边上的高作底边上的高2 2作顶角的平分线作顶角的平分线 3 3作底边上的中线作底边上的中线通过添加辅助线把三角形通过添加辅助线把三角形ABCABC分成两个分成两个全等的三角形,只要证得被分成的两个全等的三角形,只要证得被分成的两个三角形全等即可得三角形全等即可得B=CB=CABCDCBA等腰三角形的性质定理等腰三角形的性

3、质定理1:等腰等腰三角形的两个底角相等。三角形的两个底角相等。在在ABCABC中,中,AC=AB AC=AB B=C B=C 等边对等角等边对等角 等腰三角形的两个底角等腰三角形的两个底角相等相等是真命题。可以作为证明其他命题的是真命题。可以作为证明其他命题的依据依据。符号表示:符号表示:交流与发现交流与发现 根据以上证明,我们还可以得到结论:等根据以上证明,我们还可以得到结论:等腰三角形底边上的高平分底边并且平分顶腰三角形底边上的高平分底边并且平分顶角。即得到角。即得到BAD=CADBAD=CAD与与BD=CDBD=CD,于是得,于是得 性质定理性质定理2 2:等腰三角形的顶角平分线等腰三角

4、形的顶角平分线底边上的中线底上的高互相重合底边上的中线底上的高互相重合(简称简称“三线合一三线合一).).你能写出“性质定理1:等腰三角形的两个底角等的逆命题吗?如何证明这个逆命题是正确的?如果一个三角形的两个角相等,那么这两个角所对的边也相等。简称等角对等边:如图,在ABC中,B=C.求证:AB=AC分析:是不是仍然可以做辅助线将原三角形 分成两个全等的三角形呢?试试看。ABCD如果一个三角形的两个角相等,那么这两如果一个三角形的两个角相等,那么这两个角所对的边也相等。简称等角对等边个角所对的边也相等。简称等角对等边CBA符号表示:符号表示:在在ABCABC中,中,B=C B=C AC=AB

5、 AC=AB等角对等边等角对等边 利用等腰三角形的性质定理和判定定理利用等腰三角形的性质定理和判定定理证明证明:学以致用学以致用1 1、等边三角形的每个内角都是等边三角形的每个内角都是60602 2、三个角都相等的三角形是等边三三个角都相等的三角形是等边三 角形。角形。如果一个三角形的每个内角都等于如果一个三角形的每个内角都等于60600 0 ,那么这个三角,那么这个三角形是等边三角形。形是等边三角形。2.2.当等腰三角形的当等腰三角形的顶角顶角是是60600 0时时这个逆命题是真命题这个逆命题是真命题 1.当等腰三角形的当等腰三角形的一个底角一个底角等于等于600角时角时 思考:思考:“等边

6、三角形的每个内角都等于等边三角形的每个内角都等于600600的逆命题是什么?的逆命题是什么?这个逆命题是真命题吗?这个逆命题是真命题吗?有一个角是有一个角是60600 0的等腰三角形是等边三角形吗?的等腰三角形是等边三角形吗?交流与发现例例2 2:在:在ABCABC中,中,AB=ACAB=AC,D D是是ABAB上的一点,上的一点,DE BCDE BC,交,交BCBC于点于点E E,交,交CACA的延长线于点的延长线于点F F。求证:求证:AD=AFAD=AF分析:从出发先由分析:从出发先由AB=ACAB=AC利用利用“等边对等角推得等边对等角推得B=C B=C,再由等角的余,再由等角的余角相

7、等推得角相等推得BDE=F,BDE=F,进进而得到而得到ADF=F,ADF=F,最后根最后根据据“等角对等边推出等角对等边推出AD=AFAD=AF分式概念分式概念 如果整式如果整式A A除以整式除以整式B,B,可以表示成可以表示成B B中含有字母中含有字母,那么称式子,那么称式子 为为分式分式.BA整式和分式整式和分式统称有理式统称有理式。其中,其中,A叫做分式的叫做分式的分子分子,B叫做叫做分式的分式的分母分母。BA回忆与思考回忆与思考分式有无意义及值为分式有无意义及值为0 0 在分式中,分母的值不能是在分式中,分母的值不能是零。分式中的分母如果是零,那么分零。分式中的分母如果是零,那么分式

8、没有意义。式没有意义。因为零不能作为除数,所以因为零不能作为除数,所以分数的分母不能是零。分数的分母不能是零。在分式中,当分子为零而分在分式中,当分子为零而分母不为零时,分式的值为零。母不为零时,分式的值为零。分式是表示具体情景中数量的分式是表示具体情景中数量的模型,分式是分数的模型,分式是分数的“代数化,代数化,所以其性质与运算是完全类似的。所以其性质与运算是完全类似的。数学分式与现实世界密切联数学分式与现实世界密切联系。系。以前用字母表示数量关系是整式,以前用字母表示数量关系是整式,以后表示数量关系的式子可以是以后表示数量关系的式子可以是分式。分式。区分整式与分式的依据?分式成立有条件吗?

9、区分整式与分式的依据?分式成立有条件吗?1当当a=1,2时,分别求分式时,分别求分式 的值。的值。aa212当a取何值时,分式 无意义?aa214当当a取何值时,分式取何值时,分式 值为零?值为零?aa21(3当a取何值时,分式 有意义?aa21w 分式和分数也有类似的性质分式和分数也有类似的性质.w 分式的根本性质:分式的分子与分母都乘以分式的根本性质:分式的分子与分母都乘以(或或除以除以)同一个不等于零的整式,分式的值不变,同一个不等于零的整式,分式的值不变,用式子表示是:用式子表示是:w 上式中的上式中的A,B,M三个字母都表示整式,三个字母都表示整式,其中其中B必须含有字母,除必须含有

10、字母,除A可等于零外,可等于零外,B,M都不能等于零都不能等于零.因为假设因为假设B=0,分式无意义;,分式无意义;假设假设M=0,那么不管乘或除以分式的分母,那么不管乘或除以分式的分母,都将使分式无意义都将使分式无意义.或MBMABAMBMABA(其中其中M是不等于零的整式是不等于零的整式)根本性质根本性质分数的根本性质与分式的根本性质有什么区别分数的根本性质与分式的根本性质有什么区别?w在分数的根本性质中,分子与分母是都乘以在分数的根本性质中,分子与分母是都乘以(或除以或除以)同一个不等于零的数,分数的值不同一个不等于零的数,分数的值不变,这个变,这个“数是一个具体的、唯一确定的数是一个具

11、体的、唯一确定的值;而在分式的根本性质中,分式的分子与值;而在分式的根本性质中,分式的分子与分母那么是都乘以分母那么是都乘以(或除以或除以)同一个不等于零同一个不等于零的整式,分式的值不变,的整式,分式的值不变,“整式的值是随整式的值是随整式中字母的取值不同而变化的,所以它的整式中字母的取值不同而变化的,所以它的值是变化的值是变化的.分数与分式的乘除法法那么类似 w 分数的乘除法法那么分数的乘除法法那么:w 两个分数相乘两个分数相乘,把分把分子相乘的积作为积的子相乘的积作为积的分子分子,把分母相乘的把分母相乘的积作为积的分母积作为积的分母;w 两个分数相除两个分数相除,把除把除式的分子分母颠倒

12、位式的分子分母颠倒位置后置后,再与被除式相再与被除式相乘乘.w 分式的乘除法法那么分式的乘除法法那么:w 两个分式相乘两个分式相乘,把分把分子相乘的积作为积的子相乘的积作为积的分子分子,把分母相乘的把分母相乘的积作为积的分母积作为积的分母;w 两个分式相除两个分式相除,把除把除式的分子分母颠倒位式的分子分母颠倒位置后置后,再与被除式相再与被除式相乘乘.2;.1adbcdcabcdabacbdcdab 乘方运算乘方运算 计算以下各题计算以下各题:.23.4;.3;.2;9423.13242222227224232323222axaaxaxaxaxyyxyxxyxyaayxyxanmmnmnya同

13、分母分式加减法法那么与同分母分式加减法法那么与同分母分数加减法的法那么同分母分数加减法的法那么类似类似 同分母分数加同分母分数加减法的法那么减法的法那么:分母不变分母不变,分子分子相加减相加减.同分母分式加同分母分式加减法的法那么减法的法那么:分母不变分母不变,分子分子相加减相加减.异分母分式加减法法那么与异分母分式加减法法那么与异分母分数加减法的法那么异分母分数加减法的法那么类似类似 异分母分数加减法异分母分数加减法的法那么的法那么:通分,把异分母分通分,把异分母分数化为同分母分数数化为同分母分数.异分母分式加减异分母分式加减法的法那么法的法那么:通分,把异分母通分,把异分母分式化为同分母分

14、式化为同分母分式分式.约分与通分约分与通分最大公因式与最简公分母最大公因式与最简公分母 最大公因式最大公因式:分子分母系数的分子分母系数的最大公约数;最大公约数;分子分母中相同分子分母中相同因式的最低次幂因式的最低次幂.最简公分母最简公分母:各分母系数的最各分母系数的最小公倍数;小公倍数;各分母中所有不各分母中所有不同因式的最高次同因式的最高次幂幂.要比较两个量要比较两个量ab的大小的大小,我们只要我们只要对对ab作减法运算作减法运算,如果如果:a-b0,那么那么ab;如果如果:a-b=0,那么那么a=b;如果如果:a-b0,那么那么ab.议一议议一议 上面所得到的方程有什么共同特点?这样上面

15、所得到的方程有什么共同特点?这样的方程怎么称呼的方程怎么称呼?分母中都含有未知数分母中都含有未知数.分母分母中含有中含有未知数未知数的方程叫做的方程叫做分式方程分式方程452600480 xx2050004800 xx3000150009000 xx解分式方程一般需要哪几个步骤解分式方程一般需要哪几个步骤?1、去分母去分母2、去括号、去括号3、移项、移项4、合并同类项、合并同类项5、把未知项的系数化为、把未知项的系数化为16、验根验根关键:找最简公分母关键:找最简公分母依据:等式的根本性质依据:等式的根本性质2各分母中所有不同因式的各分母中所有不同因式的最高次幂最高次幂.各分母系数的最小公倍数

16、各分母系数的最小公倍数注意注意如果分母是如果分母是多项式,首多项式,首先要进行因先要进行因式分解式分解 方法方法目的:把分式方程化为整目的:把分式方程化为整 式方程。式方程。注意:分数线的括号作用注意:分数线的括号作用整式方程整式方程 去分母去分母 解整式方程解整式方程 转化转化解分式方程容易犯的错误主要有:解分式方程容易犯的错误主要有:(1)去分母时,原方程的整式局部漏乘去分母时,原方程的整式局部漏乘(2)约去分母后,分子是多项式时,约去分母后,分子是多项式时,要注要注意添括号意添括号 (3)增根不舍掉增根不舍掉.(4)列分式方程解应用题的一般步骤列分式方程解应用题的一般步骤1.审审:分析题

17、意分析题意,找出数量关系和相等关系找出数量关系和相等关系.2.设设:选择恰当的未知数选择恰当的未知数,注意单位和语言完整注意单位和语言完整.3.列列:根据数量和相等关系根据数量和相等关系,正确列出代数式和方正确列出代数式和方程程.4.解解:认真仔细认真仔细.5.验验:有有三次三次检验检验.6.答答:注意单位和语言完整注意单位和语言完整.且答案要生活化且答案要生活化.1.1.编写一道与下面分式方程相编写一道与下面分式方程相符的实际问题符的实际问题.510250 xx跟踪练习跟踪练习2.2.农机厂职工到距工厂农机厂职工到距工厂1515千米的某地去检修农千米的某地去检修农机,一局部人骑自车走,过了机

18、,一局部人骑自车走,过了4040分钟,其余的分钟,其余的人乘汽车出发,他们同时到达,汽车的速度是人乘汽车出发,他们同时到达,汽车的速度是自行车速度的自行车速度的3 3倍,求两种车的速度。倍,求两种车的速度。3.甲、乙两人骑自行车各行甲、乙两人骑自行车各行28公里,甲比乙快公里,甲比乙快 小时,甲与乙速度比为小时,甲与乙速度比为8:7,求两人速度。,求两人速度。14解:设甲的速度解:设甲的速度8x千米千米/时,时,乙的速度是乙的速度是7x千米千米/时。时。41828728xx4.一船在静水中每小时航行一船在静水中每小时航行20千米,顺水航行千米,顺水航行72千米的时间恰好等于逆水航行千米的时间恰好等于逆水航行48千米的时间,千米的时间,求每小时的水流速度。求每小时的水流速度。解:设水流每小时流动解:设水流每小时流动x千米。千米。72482020 xx

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 初中 > 数学 > 青岛版(2024) > 八年级上册
版权提示 | 免责声明

1,本文(2022年青岛版数学八年级上《几何证明举例》立体课件2.ppt)为本站会员(ziliao2023)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!


侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|