1、3.43.4圆心角圆心角第第2课时圆心角定理的逆定理课时圆心角定理的逆定理C BA OMONABCDOMONOMONABCDABCD5(4分)如图所示,AB,CD为 O的两条弦,ABCD,OEAB于点E,且OE2 cm,那么点O到CD的距离为_cm.6(4分)如图所示,AB是 O的直径,AC,CD,DE,EF,FB都是 O的弦,且ACCDDEEFFB,则AOC_,COF_236108第5题图 第6题图 B B 专题六与中点有关的辅助线作法教材母题(教材P99例题)已知:如图,在四边形ABCD中,E,F,G,H分别是AB,BC,CD,DA的中点求证:四边形EFGH是平行四边形证明:见教材P99页
2、【思想方法】(1)连接对角线,把四边形转化为三角形体现了转化思想(2)遇到中点找中点,这种方法常用于解决三角形和四边形的有关问题,主要是连接两个中点作中位线因此,在三角形中,已知三角形两边中点,连接两个中点,即可构造三角形的中位线(3)遇到中点作中线,这种方法常用于解决直角三角形或等腰三角形的有关问题,主要是运用直角三角形斜边上的中线或等腰三角形底边上的中线的性质因此,遇到直角三角形斜边上的中点或等腰三角形底边上的中点,应联想到作中线变形1如图,在锐角三角形ABC中,分别以AB,AC为边向外作等边三角形ABM,ACN,已知D,E,F分别是BM,BC,CN的中点,连接DE,EF.求证:DEEF.证明:延长AF交直线BC于点M,延长AG交直线BC于点N.BD平分ABM,ABFMBF.AFBD,AFBMFB.BFBF,AFB MFB.AFMF,ABBM.同理可证AGNG,ACCN.FG是AMN的中位线变形3如图,在四边形ABCD中,ABCD,M,N分别是BC,AD的中点求证:BEMCFM.证明:如图,连接AC,取AC中点G,连接NG,MG.M,N分别是BC,AD的中点,NG是ACD的中位线,