2022年浙教初中数学九上《圆心角》课件3.ppt

上传人(卖家):ziliao2023 文档编号:7182634 上传时间:2023-10-08 格式:PPT 页数:38 大小:1.08MB
下载 相关 举报
2022年浙教初中数学九上《圆心角》课件3.ppt_第1页
第1页 / 共38页
2022年浙教初中数学九上《圆心角》课件3.ppt_第2页
第2页 / 共38页
2022年浙教初中数学九上《圆心角》课件3.ppt_第3页
第3页 / 共38页
2022年浙教初中数学九上《圆心角》课件3.ppt_第4页
第4页 / 共38页
2022年浙教初中数学九上《圆心角》课件3.ppt_第5页
第5页 / 共38页
点击查看更多>>
资源描述

1、 圆心角圆心角 所对所对的弧为的弧为 AB,A AO OB B 过点过点O作弦作弦AB的垂线的垂线,垂足垂足为为M,OABM 顶点在圆心的角顶点在圆心的角,叫叫圆心角圆心角,如如 ,A AO OB B所对的弦为所对的弦为AB;图图1 OM是唯一的。是唯一的。则垂线段则垂线段OM的长度的长度,即圆即圆心到弦的距离,叫心到弦的距离,叫弦心距弦心距,图图1中,中,OM为为AB弦的弦心距。弦的弦心距。1、判别下列各图中的角是不是圆心角,并说明理由。2、下列图中弦心距做对了的是()由上分析,任意给圆心角,对应出现由上分析,任意给圆心角,对应出现四个量:四个量:圆心角圆心角弧弧弦弦 弦心距弦心距猜猜 想:

2、想:?,BOAAOB.2 情况又如何若 图 2 也就是在也就是在 图图2 中研究不同的圆中研究不同的圆心角心角 、,以及它们,以及它们所对的弧所对的弧 ,弦弦 ,弦的弦心距弦的弦心距 OM、之间的关之间的关系。系。B BO OA AB BA AA AB B、AOBAOBMMO OB BA AA AB B、.MOOM,BAABBAAB,BOAAOB1.,则若?圆的旋转不变性:圆的旋转不变性:圆绕圆心旋转任意角圆绕圆心旋转任意角,都能,都能够与原来的圆重合。够与原来的圆重合。注:注:=180O 旋转,旋转,说明圆是以圆心为对称中说明圆是以圆心为对称中心的中心对称图形。心的中心对称图形。图图 31.

3、射线射线OB与射线与射线OB重合吗重合吗?为什么为什么?2.点点A与与A ,点,点B与与B 重合吗?重合吗?为什么?为什么?4.OM 与与OM 呢?为什么?呢?为什么?于是,若于是,若AOB=AOB,则则 AB=AB,AB=AB,OM=OM.3.AB与与A B ,弦弦AB与弦与弦A B重合吗?为什么?重合吗?为什么?将将AOB连同连同AB绕圆心绕圆心O旋转,旋转,使射线使射线OA与射线与射线OA 重合重合,则:则:图图 4 如图,如图,O 和和 O 是等圆,是等圆,如果如果 AOB=AOB 那么那么 AB=AB、AB=AB、OM=OM,为什么?为什么?圆心角定理圆心角定理 :在同圆或等圆中,相

4、等的圆心角在同圆或等圆中,相等的圆心角 所对的弧相等,所对的弦相等,所对的弦的弦心所对的弧相等,所对的弦相等,所对的弦的弦心距相等。距相等。已知:如图已知:如图5,AOB=AOB ,OM、OM 分别是弦分别是弦 AB、弦、弦 AB 的弦心距的弦心距.求证:求证:AB=AB,AB=AB,OM=OM 证明:证明:将将AOB连同连同AB绕圆心绕圆心O旋转,旋转,使射线使射线OA与射线与射线OA 重合重合.又根据弦心距的唯一性,得又根据弦心距的唯一性,得OM=OM图图 5.BAAB,BAABBB,AABOOB,AOOABOOB重合.与 合 重 与重合.与,BOAAOB 另外,对于等圆的情况另外,对于等

5、圆的情况 ,因为两个等圆可,因为两个等圆可叠合成同圆,所以等圆问题可转化为同圆问题,叠合成同圆,所以等圆问题可转化为同圆问题,命题成立。命题成立。条件条件结论结论在同圆或等圆中在同圆或等圆中如果圆心角相等如果圆心角相等那么那么圆心角所对的弧相等圆心角所对的弧相等圆心角所对的弦相等圆心角所对的弦相等圆心角所对的弦的弦心距相等圆心角所对的弦的弦心距相等在同圆或等圆中在同圆或等圆中如果弦相等如果弦相等那么那么弦所对的圆心角相等弦所对的圆心角相等弦所对的弧(指劣弧)相等弦所对的弧(指劣弧)相等弦的弦心距相等弦的弦心距相等在同圆或等圆中在同圆或等圆中如果弦心距相等如果弦心距相等那么那么弦心距所对应的圆心

6、角相等弦心距所对应的圆心角相等弦心距所对应的弧相等弦心距所对应的弧相等弦心距所对应的弦相等弦心距所对应的弦相等在同圆或等圆中在同圆或等圆中如果弧相等如果弧相等那么那么弧所对的圆心角相等弧所对的圆心角相等弧所对的弦相等弧所对的弦相等弧所对的弦的弦心距相等弧所对的弦的弦心距相等推论:推论:(圆心角定理的逆定理圆心角定理的逆定理)在同圆或等圆中,如果两个圆心在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所心距中有一组量相等,那么它们所对应的其余的各组量都分别相等。对应的其余的各组量都分别相等。例例1 如图,已知点如图,已知点O是是

7、EPF 的平分线上一点,的平分线上一点,P点在圆外,点在圆外,以以O为圆心的圆与为圆心的圆与EPF 的两边分别相交于的两边分别相交于A、B和和C、D。求证:求证:AB=CD.分析:分析:联想到联想到“角平分线的性质角平分线的性质”,作弦心距,作弦心距OM、ON,证明证明:作作 ,垂足分别为垂足分别为M、N.CDCDONON ,ABABOMOMCDCDONONABABOMOMNPONPOMPOMPOOM=ONAB=CD.PABCMND要证要证AB=CD,只需证,只需证OM=ON.O.PBEDFOAC.如图,如图,P点在圆上,点在圆上,PB=PD吗?吗?P点在圆内,点在圆内,AB=CD吗?吗?思考

8、:思考:PBEMNDFOMN直线与圆的位置关系有下面的性质:如果 O的半径为r,圆心O到直线l的距离为d,那么(1)dr 直线l与 O相交 (2)d=r 直线l与 O相切 (3)d r 直线l与 O相离请按照下述步骤作图:如图,在 O上任取一点A,连结OA,过点A作直线lOA,OA思考以下问题:(1)圆心O到直线l的距离和圆的半径有什么关系?(2)直线l和 O的位置有什么关系?根据什么?(3)由此你发现了什么?相等d=r相切特征一:直线L经过半径OA 的外端点A特征二:直线L垂直于半径OA一般地,有以下直线与圆相切的判定定理:经过半径的外端并且垂直这条半径的直线是圆的切线OAlOA是 O 的半

9、径,lOA于Al是 O的切线OAOAAO 经过半径外端并且垂直于这条半径的直线是圆的切线。判断下图中的l 是否为 O的切线半径外端垂直证明一条直线为圆的切线时,必须两个条件缺一不可:过半径外端垂直于这条半径。例1.已知:如图A是 O外一点,AO的延长线交 O于点C,点B在圆上,且AB=BC,A=30.求证:直线AB是 O的切线ABCO证明:连结OBOB=OC,AB=BC,A=30OBC=C=A=30AOB=C+OBC=60ABO=180-(AOB+A)=180-(60+30)=90ABOBAB为 O的切线做一做:如图是 的直径,请分别过,作 的切线OB一般情况下,要证明一条直线为圆的切线,它过

10、半径外端(即一点已在圆上)是已知给出时,只需证明直线垂直于这条半径。巩固练习 1、如图,已知点B在 O上。根据下列条件,能否判定直线AB和 O相切?OB=7,AO=12,AB=6O=68.5,A=2130BAO2、如图,AB是 O的直径,AT=AB,ABT=45。求证:AT是 O的切线BOTA巩固练习例2.如图,台风P(100,200)沿北偏东30方向移动,受台风影响区域的半径为200km,那么下列城市A(200,380),B(600,480),C(550,300),D(370,540)中,哪些受到这次台风的影响,哪些不受到台风的影响?0100400 500600 700300200X(km)

11、y(km)60050040030020010030PABCDOPSTQ2.如图,OP是O的半径,POT=60,OT交O于S点.(1)过点P作O的切线.(2)过点P的切线交OT于Q,判断S是不是OQ的中点,并说明理由.请任意画一个圆,并在这个圆所在的平面内任意取一点P.(1)过点P是否都能作这个圆的切线?(2)点P在什么位置时,能作并且只能作一条切线?(3)点P在什么位置时,能作两条切线?这两条切线有什么特性?(4)能作多于2条的切线吗?点在圆内不能作切线点在圆上点在圆外相等不能补充例3、如图已知直线AB过 O上的点C,并且OAOB,CACB 求证:直线是 O的切线BAC证明:连接OCOA=OB

12、,CA=CBOC是等腰三角形OAB底边AB上的中线ABOC直线经过半径的外端C,并且垂直于半径OC,所以AB是 O的切线已知已知ABCABC内接于内接于O,O,直线直线EFEF过点过点A A(1)如图)如图1,AB为直径,要使得为直径,要使得EF是是OO的的切线,还需添加的条件是切线,还需添加的条件是 或或 。(2)如图)如图2,AB为非直径弦,且为非直径弦,且CAE=B,求证:求证:EF为为OO的切线。的切线。FECBAOCBEFAO一般情况下,要证明一条直线为圆的切线,它过半径外端(即一点已在圆上)是已知给出时,只需证明直线垂直于这条半径。例5、如图:点O为ABC平分线上一点,ODAB于D

13、,以O为圆心,OD为半径作圆。求证:BC是 O 的切线。CABDE证明:作OEBC于E点O为ABC平分线上一点ODAB于DOEOD又OD为 O半径圆心到直线BC的距离等于半径,所以BC与 O相切证明直线与圆相切,但无切点时,往往过圆心作切线的垂线,再证明d=r即可切线的判定方法有:、切线的判定定理。、直线到圆心的距离等于圆的半径。、直线与圆有唯一个公共点。切线的判定定理:经过半径外端并且垂直于这条半径的直线是圆的切线。、经过半径外端的直线是圆的切线。、垂直于半径的直线是圆的切线。、过直径的外端并且垂直于这条直径的 直线是圆的切线。、和圆只有一个公共点的直线是圆的切 线。、以等腰三角形的顶点为圆

14、心,底边上 的高为半径的圆与底边相切。是非题:判断下列命题是否正确。()()()()()、填空:在三角形OAB中,若OA=4,OB=4,圆O的半径是2,则当AOB=_时,直线AB与圆O相切。、选择:下列直线能判定为圆的切线是()A、与圆有公共点的直线B、垂直于圆的半径的直线C、过圆的半径外端的直线D、到圆心的距离等于该圆半径的直线如图,已知AB是 O的直径,O过BC的中点D,且DEAC.(1)求证:DE是 O的切线.(2)若C=30,CD=10cm,求 的半径O.证明题:4、如图,AB是O的直径,弦AD平分BAC,过A作ACDC,求证:DC是O的切线。BDCAO巩固练习5 如图,已知四边形AB

15、CD是直角梯形,ADBC,ABBC,CDADBC。求证:以CD为直径的 O与AB相切OBDACE证明:过点O作OEAB,垂足为E。ADBC,ABBC,ADAB而OEAB ADOEBC巩固练习经过半径的外端并且垂直这条半径的直线是圆的切线切线的判定定理:这个定理不仅可以用来判定圆的切线,还可以依据它来画切线.在判定切线的时候,如果已知点在圆上,则连半径是常用的辅助线作OEBC于E当已知条件中没有明确直线与圆是否有公共点时辅助线:是过圆心作这条直线的垂线段。再证明这条垂线段的长等于半径。连结OC当已知条件中直线与圆已有一个公共点时辅助线:是连结圆心和这个公共点。再证明这条半径与直线垂直。例3、如图

16、已知直线AB过 O上的点C,并且OAOB,CACB求证:直线是 O的切线BAC例5、如图:点O为ABC平分线上一点,ODAB于D,以O为圆心,OD为半径作圆。求证:BC与作 O相切。CABDE作OEBC于E当已知条件中没有明确直线与圆是否有公共点时辅助线:是过圆心作这条直线的垂线段。再证明这条垂线段的长等于半径。连结OC当已知条件中直线与圆已有一个公共点时辅助线:是连结圆心和这个公共点。再证明这条半径与直线垂直。例3、如图已知直线AB过 O上的点C,并且OAOB,CACB求证:直线是 O的切线BAC例5、如图:点O为ABC平分线上一点,ODAB于D,以O为圆心,OD为半径作圆。求证:BC与作 O相切。CABDE

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 初中 > 数学 > 浙教版 > 九年级上册
版权提示 | 免责声明

1,本文(2022年浙教初中数学九上《圆心角》课件3.ppt)为本站会员(ziliao2023)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!


侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|