1、30.5 二次函数与一元二次方程的关系导入新课讲授新课当堂练习课堂小结第三十章 二次函数学习目标1.通过探索,理解二次函数与一元二次方程之间的联系.(难点)2.能运用二次函数及其图像、性质确定方程的解.(重点)3.了解用图像法求一元二次方程的近似根. 我们学习了一元一次方程kx+b=0(k0)和一次函数y=kx+b(k0)后,讨论了它们之间的关系.当一次函数中的函数值y=0时,一次函数y=kx+b就转化成了一元一次方程kx+b=0且一次函数y=kx+b(k0)的图象与x轴交点的横坐标即为一元一次方程kx+b=0的解. 问题:现在我们学习了一元二次方程ax2+bx+c=0(a0)和二次函数y=a
2、x2+bx+c(a0),它们之间是否也存在一定的关系呢?导入新课导入新课回顾与思考一元二次方程的根与二次函数图象的关系一思考 观察思考下列二次函数的图像与x轴有公共点吗?如果有,公共点的横坐标是多少?当x取公共点的横坐标时,函数的值是多少?由此你能得出相应的一元二次方程的根吗?(1)y=x2+x-2;(2)y=x2-6x+9;(3)y=x2-x+1.讲授新课讲授新课1y = x26x9y = x2x1y = x2x2观察图像,完成下表抛物线与x轴公共点个数公共点横坐标相 应 的 一 元 二 次方程的根y = x2x1y = x26x9y = x2x20个1个2个x2-x+1=0无解0 x2-6
3、x+9=0,x1=x2=3-2, 1 x2+x-2=0,x1=-2,x2=1知识要点二次函数y=ax2+bx+c的图像与x轴交点一元二次方程ax2+bx+c=0的根b2-4ac有两个交点有两个不相等的实数根b2-4ac 0有一个交点有两个相等的实数根b2-4ac = 0没有交点没有实数根b2-4ac 0二次函数y=ax2+bx+c的图像与x轴交点的坐标与一元二次方程ax2+bx+c=0根的关系例:求一元二次方程 的根的近似值(精确到0.1).0122 xx 分析:一元二次方程 x-2x-1=0 的根就是抛物线 y=x-2x-1 与x轴的交点的横坐标,因此我们可以先画出这条抛物线,然后从图上找出
4、它与x轴的交点的横坐标,这种解一元二次方程的方法叫作图象法.利用二次函数求一元二次方程的近似解二解:画出函数 y=x-2x-1 的图象(如下图),由图象可知,方程有两个实数根,一个在-1与0之间,另一个在2与3之间.先求位于-1到0之间的根,由图象可估计这个根是-0.4或-0.5,利用计算器进行探索,见下表:x-0.4-0.5y-0.040.25观察上表可以发现,当x分别取-0.4和-0.5时,对应的y由负变正,可见在-0.5与-0.4之间肯定有一个x使y=0,即有y=x2-2x-1的一个根,题目只要求精确到0.1,这时取x=-0.4或x=-0.5都符合要求.但当x=-0.4时更为接近0.故x
5、1-0.4.同理可得另一近似值为x22.4.一元二次方程的图象解法利用二次函数的图象求一元二次方程2x2+x-15=0的近似根.(1)用描点法作二次函数 y=2x2+x-15的图象;(2)观察估计二次函数 y=2x2+x-15的图象与x轴的交点的横坐标;由图象可知,图象与x轴有两个交点,其横坐标一个是-3,另一个在2与3之间,分别约为-3和2.5(可将单位长再十等分,借助计算器确定其近似值);(3)确定方程2x2+x-15=0的解;由此可知,方程2x2+x-15=0的近似根为:x1-3,x22.5.方法归纳 一元二次方程ax2+bx+c=m的根就是二次函数y=ax2+bx+c 与直线y=m(m
6、是实数)图象交点的横坐标 . 既可以用求根公式求二次方程的根,也可以通过画二次函数图象来估计一元二次方程的根.说一说 判断方程 ax2+bx+c =0 (a0,a,b,c为常数)一个解x的范围是( ) A. 3 x 3.23 B. 3.23 x 3.24 C. 3.24 x 3.25 D. 3.25 x0 ? (3)x取什么值时,y0 ?862xxy0862 xxxyO248解:(:(1)x1=2,x2=4;(2)x4;(3)2x4.能力提升课堂小结课堂小结二次函数与一元二次方程二次函数与一元二次方程的关系y=ax2+bx+c(a 0)当y取定值时就成了一元二次方程;ax2+bx+c=0(a 0),右边换成y时就成了二次函数.二次函数与一元二次方程根的情况二次函数二次函数与与x轴的轴的交点个数交点个数判别式 的符号一元二次方程根的情况见本课时练习课后作业课后作业