2019届高考数学一轮复习第八章立体几何8.5直线平面垂直的判定与性质课件(文科)新人教A版.ppt

上传人(卖家):flying 文档编号:35108 上传时间:2018-08-15 格式:PPT 页数:46 大小:2.08MB
下载 相关 举报
2019届高考数学一轮复习第八章立体几何8.5直线平面垂直的判定与性质课件(文科)新人教A版.ppt_第1页
第1页 / 共46页
2019届高考数学一轮复习第八章立体几何8.5直线平面垂直的判定与性质课件(文科)新人教A版.ppt_第2页
第2页 / 共46页
2019届高考数学一轮复习第八章立体几何8.5直线平面垂直的判定与性质课件(文科)新人教A版.ppt_第3页
第3页 / 共46页
2019届高考数学一轮复习第八章立体几何8.5直线平面垂直的判定与性质课件(文科)新人教A版.ppt_第4页
第4页 / 共46页
2019届高考数学一轮复习第八章立体几何8.5直线平面垂直的判定与性质课件(文科)新人教A版.ppt_第5页
第5页 / 共46页
点击查看更多>>
资源描述

1、8.5直线、平面垂直的判定与性质,-2-,知识梳理,双基自测,2,3,1,自测点评,1.直线与平面垂直,任意,mn=O,a,-3-,知识梳理,双基自测,2,3,1,自测点评,b?,ab,-4-,知识梳理,双基自测,自测点评,2,3,1,2.平面与平面垂直(1)平面与平面垂直的定义两个平面相交,如果它们所成的二面角是,就说这两个平面互相垂直.,直二面角,-5-,知识梳理,双基自测,自测点评,2,3,1,(2)判定定理与性质定理,垂线,交线,l,-6-,知识梳理,双基自测,自测点评,2,3,1,3.常用结论(1)线面平行或垂直的有关结论若两平行线中的一条垂直于一个平面,则另一条也垂直于这个平面.若

2、一条直线垂直于一个平面,则它垂直于这个平面内的任何一条直线(证明线线垂直的一个重要方法).垂直于同一条直线的两个平面平行.一条直线垂直于两平行平面中的一个,则这一条直线与另一个平面也垂直.两个相交平面同时垂直于第三个平面,它们的交线也垂直于第三个平面.(2)证明线面垂直时,易忽视平面内两条线为相交线这一条件.,2,-7-,知识梳理,双基自测,3,4,1,5,自测点评,1.下列结论正确的打“”,错误的打“”.(1)已知直线a,b,c;若ab,bc,则ac.()(2)直线l与平面内的无数条直线都垂直,则l.()(3)设m,n是两条不同的直线,是一个平面,若mn,m,则n.()(4)若两平面垂直,则

3、其中一个平面内的任意一条直线垂直于另一个平面.()(5)若平面内的一条直线垂直于平面内的无数条直线,则.(),答案,-8-,知识梳理,双基自测,自测点评,2,3,4,1,5,2.如图,O为正方体ABCD-A1B1C1D1的底面ABCD的中心,则下列直线中与B1O垂直的是()A.A1DB.AA1C.A1D1D.A1C1,答案,-9-,知识梳理,双基自测,自测点评,2,3,4,1,5,3.(教材习题改编P69练习)将图1中的等腰直角三角形ABC沿斜边BC的中线折起得到空间四面体A-BCD(如图2),则在空间四面体A-BCD中,AD与BC的位置关系是()图1图2A.相交且垂直B.相交但不垂直C.异面

4、且垂直D.异面但不垂直,答案,-10-,知识梳理,双基自测,自测点评,2,3,4,1,5,4.(教材习题改编P67T2)P为ABC所在平面外一点,O为P在平面ABC内的射影.(1)若P到ABC三边距离相等,且O在ABC的内部,则O是ABC的心;(2)若PABC,PBAC,则O是ABC的心;(3)若PA,PB,PC与底面所成的角相等,则O是ABC的心.,答案,-11-,知识梳理,双基自测,自测点评,2,3,4,1,5,5.如图,PAO所在平面,AB是O的直径,C是O上一点,AEPC,AFPB,给出下列结论:AEBC;EFPB;AFBC;AE平面PBC,其中真命题的序号是.,答案,解析,-12-,

5、知识梳理,双基自测,自测点评,1.在空间中垂直于同一直线的两条直线不一定平行,还有可能异面、相交等.2.使用线面垂直的定义和线面垂直的判定定理,不要误解为“如果一条直线垂直于平面内的无数条直线,就垂直于这个平面”.3.判断线面关系时最容易漏掉线在面内的情况.,-13-,考点1,考点2,考点3,例1如图,在三棱台ABC-DEF中,平面BCFE平面ABC,ACB=90,BE=EF=FC=1,BC=2,AC=3.(1)求证:BF平面ACFD;(2)求直线BD与平面ACFD所成角的余弦值.思考证明线面垂直的常用方法有哪些?,-14-,考点1,考点2,考点3,(1)证明 延长AD,BE,CF相交于一点K

6、,如图所示.因为平面BCFE平面ABC,且ACBC,所以AC平面BCK,因此BFAC.又因为EFBC,BE=EF=FC=1,BC=2,所以BCK为等边三角形,且F为CK的中点,则BFCK.所以BF平面ACFD.,-15-,考点1,考点2,考点3,-16-,考点1,考点2,考点3,解题心得1.证明线面垂直的方法:一是线面垂直的判定定理;二是利用面面垂直的性质定理;三是平行线法(若两条平行线中的一条垂直于这个平面,则另一条也垂直于这个平面).2.解题时,注意线线、线面与面面关系的相互转化;另外,在证明线线垂直时,要注意题中隐含的垂直关系,如等腰三角形底边上的高、中线和顶角的角平分线三线合一、矩形的

7、内角、直径所对的圆周角、菱形的对角线互相垂直、直角三角形(或给出线段长度,经计算满足勾股定理)、直角梯形等等.,-17-,考点1,考点2,考点3,对点训练1(2017山东潍坊一模)在如图所示的空间几何体中,EC平面ABCD,四边形ABCD是菱形,CEBF,且CE=2BF,G,H,P分别为AF,DE,AE的中点.求证:(1)GH平面BCEF;(2)FP平面ACE.,-18-,考点1,考点2,考点3,证明:(1)取EC中点M,FB中点N,连接HM,GN.,四边形HMNG是平行四边形,GHMN.GH?平面BCEF,MN?平面BCEF,GH平面BCEF.,-19-,考点1,考点2,考点3,四边形PFB

8、O是平行四边形,PFBO,BOAC,BOEC,ACEC=C,BO平面ACE,FP平面ACE.,-20-,考点1,考点2,考点3,例2如图,四边形ABCD为菱形,G为AC与BD的交点,BE平面ABCD.(1)证明:平面AEC平面BED;(2)若ABC=120,AEEC,三棱锥E-ACD的体积为 ,求该三棱锥的侧面积.思考证明面面垂直的常用方法有哪些?,-21-,考点1,考点2,考点3,(1)证明 因为四边形ABCD为菱形,所以ACBD.因为BE平面ABCD,所以ACBE.故AC平面BED.又AC?平面AEC,所以平面AEC平面BED.,-22-,考点1,考点2,考点3,-23-,考点1,考点2,

9、考点3,解题心得1.两个平面互相垂直是两个平面相交的特殊情形.2.由平面和平面垂直的判定定理可知,要证明平面与平面垂直,可转化为从现有直线中寻找平面的垂线,即证明线面垂直.3.平面和平面垂直的判定定理的两个条件:l?,l,缺一不可.,-24-,考点1,考点2,考点3,对点训练2(2017河南洛阳三模)在四棱柱ABCD-A1B1C1D1中,四边形ABCD为平行四边形,AA1平面ABCD,BAD=60,AB=2,BC=1,AA1= ,E为A1B1的中点.(1)求证:平面A1BD平面A1AD;(2)求多面体A1E-ABCD的体积.,-25-,考点1,考点2,考点3,(1)证明:AB=2,AD=BC=

10、1,BAD=60,BD2+AD2=AB2,BDAD,AA1平面ABCD,BD?平面ABCD,BDAA1,又AA1AD=A,AA1?平面A1AD,AD?平面A1AD,BD平面A1AD,又BD?平面A1BD,平面A1BD平面A1AD.,-26-,考点1,考点2,考点3,-27-,考点1,考点2,考点3,考向一平行与垂直关系的证明例3如图,在直三棱柱ABC-A1B1C1中,D,E分别为AB,BC的中点,点F在侧棱B1B上,且B1DA1F,A1C1A1B1.求证:(1)直线DE平面A1C1F;(2)平面B1DE平面A1C1F.思考处理平行与垂直关系的综合问题的主要数学思想是什么?,-28-,考点1,考

11、点2,考点3,证明 (1)在直三棱柱ABC-A1B1C1中,A1C1AC.在ABC中,因为D,E分别为AB,BC的中点,所以DEAC,于是DEA1C1.又因为DE?平面A1C1F,A1C1?平面A1C1F,所以直线DE平面A1C1F.,-29-,考点1,考点2,考点3,(2)在直三棱柱ABC-A1B1C1中,A1A平面A1B1C1.因为A1C1?平面A1B1C1,所以A1AA1C1.又因为A1C1A1B1,A1A?平面ABB1A1,A1B1?平面ABB1A1,A1AA1B1=A1,所以A1C1平面ABB1A1.因为B1D?平面ABB1A1,所以A1C1B1D.又因为B1DA1F,A1C1?平面

12、A1C1F,A1F?平面A1C1F,A1C1A1F=A1,所以B1D平面A1C1F.因为直线B1D?平面B1DE,所以平面B1DE平面A1C1F.,-30-,考点1,考点2,考点3,考向二探索性问题中的平行与垂直关系,例4(2017北京房山区一模)如图1,在直角梯形ABCD中,ABCD,ABBC,AB=2CD,DEAB,沿DE将AED折起到A1ED的位置,连接A1B,A1C,M,N分别为A1C,BE的中点,如图2.,-31-,考点1,考点2,考点3,(1)求证:DEA1B.(2)求证:MN平面A1ED.(3)在棱A1B上是否存在一点G,使得EG丄平面A1BC?若存在,求出 的值;若不存在,说明

13、理由.思考探索性问题的一般处理方法是什么?,(1)证明:在直角梯形ABCD中,ABCD,ABBC,AB=2CD,DEAB,沿DE将AED折起到A1ED的位置,DEA1E,DEBE,A1EBE=E,DE平面A1BE,A1B?平面A1BE,DE丄A1B.,-32-,考点1,考点2,考点3,(2)证明:取CD中点F,连接NF,MF.M,N分别为A1C,BE的中点,MFA1D,NFDE,又DEA1D=D,NFMF=F,DE?平面A1DE,A1D?平面A1DE,NF?平面MNF,MF?平面MNF,平面A1DE平面MNF.MN平面A1ED.,-33-,考点1,考点2,考点3,(3)解:取A1B的中点G,连

14、接EG.A1E=BE,EGA1B,由(1)知DE平面A1BE.DEBC,BC平面A1BE,EGBC,又A1BBC=B,EG平面A1BC.,-34-,考点1,考点2,考点3,考向三折叠问题中的平行与垂直关系例5如图,菱形ABCD的对角线AC与BD交于点O,点E,F分别在AD,CD上,AE=CF,EF交BD于点H.将DEF沿EF折到DEF的位置.(1)证明:ACHD;思考折叠问题的处理关键是什么?,-35-,考点1,考点2,考点3,-36-,考点1,考点2,考点3,-37-,考点1,考点2,考点3,解题心得平行与垂直的综合应用问题的主要数学思想和处理策略:(1)处理平行与垂直的综合问题的主要数学思

15、想是转化,要熟练掌握线线、线面、面面之间的平行与垂直的转化.(2)探索性问题一般是先根据条件猜测点的位置再给出证明,探索点的存在问题,点多为中点或三等分点中的某一个,也可以根据相似知识找点.(3)折叠问题中的平行与垂直关系的处理关键是结合图形弄清折叠前后变与不变的数量关系,尤其是隐含着的垂直关系.,-38-,考点1,考点2,考点3,对点训练3如图1,在RtABC中,ABC=90,D为AC的中点,AEBD于点E(不同于点D),延长AE交BC于点F,将ABD沿BD折起,得到三棱锥A1-BCD,如图2所示.图1图2(1)若M是FC的中点,求证:直线DM平面A1EF;(2)求证:BDA1F.,-39-

16、,考点1,考点2,考点3,证明 (1)因为D,M分别为AC,FC的中点,所以DMEF.又EF?平面A1EF,DM?平面A1EF,所以DM平面A1EF.(2)因为A1EBD,EFBD且A1EEF=E,所以BD平面A1EF.又A1F?平面A1EF,所以BDA1F.,-40-,考点1,考点2,考点3,1.转化思想:垂直关系的转化2.在证明两平面垂直时一般先从现有的直线中寻找平面的垂线,若这样的直线图中不存在,则可通过作辅助线来解决.如有平面垂直时,一般要用性质定理,在一个平面内作交线的垂线,使之转化为线面垂直,然后进一步转化为线线垂直.故熟练掌握“线线垂直”“面面垂直”间的转化条件是解决这类问题的关键.,-41-,考点1,考点2,考点3,1.在解决直线与平面垂直的问题过程中,要注意直线与平面垂直的定义、判定

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 高中 > 数学 > 高考专区 > 一轮复习
版权提示 | 免责声明

1,本文(2019届高考数学一轮复习第八章立体几何8.5直线平面垂直的判定与性质课件(文科)新人教A版.ppt)为本站会员(flying)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!


侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|