随机变量及其分布列.版块二.几类典型的随机分布1.学生版.doc

上传人(卖家):和和062 文档编号:357249 上传时间:2020-03-11 格式:DOC 页数:6 大小:762.50KB
下载 相关 举报
随机变量及其分布列.版块二.几类典型的随机分布1.学生版.doc_第1页
第1页 / 共6页
随机变量及其分布列.版块二.几类典型的随机分布1.学生版.doc_第2页
第2页 / 共6页
随机变量及其分布列.版块二.几类典型的随机分布1.学生版.doc_第3页
第3页 / 共6页
随机变量及其分布列.版块二.几类典型的随机分布1.学生版.doc_第4页
第4页 / 共6页
随机变量及其分布列.版块二.几类典型的随机分布1.学生版.doc_第5页
第5页 / 共6页
点击查看更多>>
资源描述

1、两点分布知识内容1 离散型随机变量及其分布列离散型随机变量如果在试验中,试验可能出现的结果可以用一个变量来表示,并且是随着试验的结果的不同而变化的,我们把这样的变量叫做一个随机变量随机变量常用大写字母表示如果随机变量的所有可能的取值都能一一列举出来,则称为离散型随机变量离散型随机变量的分布列将离散型随机变量所有可能的取值与该取值对应的概率列表表示:我们称这个表为离散型随机变量的概率分布,或称为离散型随机变量的分布列2几类典型的随机分布两点分布如果随机变量的分布列为其中,则称离散型随机变量服从参数为的二点分布二点分布举例:某次抽查活动中,一件产品合格记为,不合格记为,已知产品的合格率为,随机变量

2、为任意抽取一件产品得到的结果,则的分布列满足二点分布两点分布又称分布,由于只有两个可能结果的随机试验叫做伯努利试验,所以这种分布又称为伯努利分布超几何分布一般地,设有总数为件的两类物品,其中一类有件,从所有物品中任取件,这件中所含这类物品件数是一个离散型随机变量,它取值为时的概率为,为和中较小的一个我们称离散型随机变量的这种形式的概率分布为超几何分布,也称服从参数为,的超几何分布在超几何分布中,只要知道,和,就可以根据公式求出取不同值时的概率,从而列出的分布列二项分布1独立重复试验如果每次试验,只考虑有两个可能的结果及,并且事件发生的概率相同在相同的条件下,重复地做次试验,各次试验的结果相互独

3、立,那么一般就称它们为次独立重复试验次独立重复试验中,事件恰好发生次的概率为2二项分布若将事件发生的次数设为,事件不发生的概率为,那么在次独立重复试验中,事件恰好发生次的概率是,其中于是得到的分布列由于表中的第二行恰好是二项展开式各对应项的值,所以称这样的散型随机变量服从参数为,的二项分布,记作二项分布的均值与方差:若离散型随机变量服从参数为和的二项分布,则,正态分布1 概率密度曲线:样本数据的频率分布直方图,在样本容量越来越大时,直方图上面的折线所接近的曲线在随机变量中,如果把样本中的任一数据看作随机变量,则这条曲线称为的概率密度曲线曲线位于横轴的上方,它与横轴一起所围成的面积是,而随机变量

4、落在指定的两个数之间的概率就是对应的曲边梯形的面积2正态分布定义:如果随机现象是由一些互相独立的偶然因素所引起的,而且每一个偶然因素在总体的变化中都只是起着均匀、微小的作用,则表示这样的随机现象的随机变量的概率分布近似服从正态分布服从正态分布的随机变量叫做正态随机变量,简称正态变量正态变量概率密度曲线的函数表达式为,其中,是参数,且,式中的参数和分别为正态变量的数学期望和标准差期望为、标准差为的正态分布通常记作正态变量的概率密度函数的图象叫做正态曲线标准正态分布:我们把数学期望为,标准差为的正态分布叫做标准正态分布重要结论:正态变量在区间,内,取值的概率分别是,正态变量在内的取值的概率为,在区

5、间之外的取值的概率是,故正态变量的取值几乎都在距三倍标准差之内,这就是正态分布的原则若,为其概率密度函数,则称为概率分布函数,特别的,称为标准正态分布函数标准正态分布的值可以通过标准正态分布表查得分布函数新课标不作要求,适当了解以加深对密度曲线的理解即可3离散型随机变量的期望与方差1离散型随机变量的数学期望定义:一般地,设一个离散型随机变量所有可能的取的值是,这些值对应的概率是,则,叫做这个离散型随机变量的均值或数学期望(简称期望)离散型随机变量的数学期望刻画了这个离散型随机变量的平均取值水平2离散型随机变量的方差一般地,设一个离散型随机变量所有可能取的值是,这些值对应的概率是,则叫做这个离散

6、型随机变量的方差离散型随机变量的方差反映了离散随机变量的取值相对于期望的平均波动的大小(离散程度)的算术平方根叫做离散型随机变量的标准差,它也是一个衡量离散型随机变量波动大小的量3为随机变量,为常数,则;4 典型分布的期望与方差:二点分布:在一次二点分布试验中,离散型随机变量的期望取值为,在次二点分布试验中,离散型随机变量的期望取值为二项分布:若离散型随机变量服从参数为和的二项分布,则,超几何分布:若离散型随机变量服从参数为的超几何分布,则,4事件的独立性如果事件是否发生对事件发生的概率没有影响,即,这时,我们称两个事件,相互独立,并把这两个事件叫做相互独立事件如果事件,相互独立,那么这个事件

7、都发生的概率,等于每个事件发生的概率的积,即,并且上式中任意多个事件换成其对立事件后等式仍成立5条件概率对于任何两个事件和,在已知事件发生的条件下,事件发生的概率叫做条件概率,用符号“”来表示把由事件与的交(或积),记做(或)典例分析【例1】 在抛掷一枚图钉的随机试验中,令,如果针尖向上的概率为,试写出随机变量的概率分布【例2】 从装有6只白球和4只红球的口袋中任取一只球,用表示“取到的白球个数”,即,求随机变量的概率分布【例3】 若随机变量的概率分布如下:01试求出,并写出的分布列【例4】 抛掷一颗骰子两次,定义随机变量试写出随机变量的分布列【例5】 篮球运动员比赛投篮,命中得分,不中得分,已知运动员甲投篮命中率的概率为 记投篮次得分,求方差的最大值; 当中取最大值时,甲投次篮,求所得总分的分布列及的期望与方差6智康高中数学.板块二.几类典型的随机分布.题库

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 高中 > 数学 > 高考专区 > 一轮复习
版权提示 | 免责声明

1,本文(随机变量及其分布列.版块二.几类典型的随机分布1.学生版.doc)为本站会员(和和062)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!


侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|