1、期中复习检测试卷一、选择题(本大题共10小题,共30分。在每小题列出的选项中,选出符合题目的一项)1. 用配方法解方程x2+8x-7=0,则配方正确的是()A. (x+4)2=23B. (x-4)2=23C. (x-8)2=49D. (x+8)2=642. 下列方程中,属于一元二次方程的是()A. 2x2-y+1=0B. x-1x=0C. x2-1=0D. 2x2-2x(x+7)=03. 下列说法正确的是()A. 矩形的对角线互相垂直平分B. 对角线相等的菱形是正方形C. 有一组邻边相等的四边形是菱形D. 对角线互相垂直且相等的四边形是正方形4. 如图,在平面直角坐标系xOy中,若菱形ABCD
2、的顶点A,B的坐标分别为(-3,0),(2,0),点D在y轴上,则点C的坐标是()A. (4,5)B. (5,4)C. (4,4)D. (5,3)5. 如图,在长20米,宽12米的矩形ABCD空地中,修建4条宽度相等且都与矩形的各边垂直的小路,4条路围成的中间部分恰好是个正方形,且边长是路宽的2倍,小路的总面积是40平方米,若设小路的宽是x米,根据题意列方程,正确的是()A. 32x+2x2=40B. x(32+4x)=40C. 64x+4x2=40D. 64x-4x2=406. 定义运算:mn=mn2-mn-1.例如:42=422-42-1=7.则方程1x=0的根的情况为()A. 有两个不相
3、等的实数根B. 有两个相等的实数根C. 无实数根D. 只有一个实数根7. 如图所示,把矩形ABCD沿EF翻折,点B恰好落在AD边的B处,若AE=2,DE=6,EFB=60,则矩形ABCD的面积是()A. 12B. 24C. 123D. 1638. 一袋中装有形状、大小都相同的四个小球,每个小球上各标有一个数字,分别是1,2,3,4.现从袋中任意摸出一个小球,对应的数字作为a的值;然后将小球放回袋中并搅拌均匀,再任取一个小球,对应的数字作为b的值,则使方程ax2+6x+b=0有两个不相等的实数根的概率为()A. 116B. 18C. 316D. 349. 如图,点O为矩形ABCD的对称中心,点E
4、从点A出发沿AB向点B运动,移动到点B停止,延长EO交CD于点F,则四边形AECF形状的变化依次为()A. 平行四边形正方形平行四边形矩形B. 平行四边形菱形平行四边形矩形C. 平行四边形正方形菱形矩形D. 平行四边形菱形正方形矩形10. 如图,公路AC、BC互相垂直,公路AB的中点M与点C被湖隔开,若测得AC=10km,BC=24km,则M、C两点之间的距离为()A. 13kmB. 12kmC. 11kmD. 10km二、填空题(本大题共8小题,共24分)11. 小明抛掷一枚质地均匀的硬币9次,有6次正面向上,则第10次抛掷这枚硬币,反面向上的概率为12. 如图,在边长为3+1的菱形ABCD
5、中,A=60,点E,F分别在AB,AD上,沿EF折叠菱形,使点A落在BC边上的点G处,且EGBD于点M,则EG的长为13. 如图,将两条宽度均为2的纸条相交成30角叠放,则重合部分构成的四边形ABCD的面积为14. 快过元旦了,全班同学每两人互发一条祝福短信,共发了380条,设全班有x名同学,则可列方程为15. 如图,连接四边形ABCD各边的中点,得到四边形EFGH,还要添加,才能保证四边形EFGH是矩形16. 如图,在ABC中,AC=50cm,BC=40cm,C=90,点P从点A开始沿AC边以2cm/s的速度向点C匀速移动,同时另一点Q从点C开始以3cm/s的速度沿着射线CB匀速移动,当PC
6、Q的面积等于300cm2时,运动时间为17. 据悉,为预防新冠病毒感染的肺炎,可以选择医用外科口罩和N95口罩来阻挡大部分沾在飞沫上的病毒进入呼吸道.现张红家中有3只医用外科口罩和2只N95口罩放在同一盒子中,若随机从中选两只口罩,选到两只都是医用外科口罩的概率是18. 如图,在ABC中,AB=AC,ADBC,垂足为D,E是AC的中点.若DE=4,则AB的长为三、计算题(本大题共1小题,共6分)19. 用适当的方法解方程(1)3x(x-1)=2-2x(2)(x-2)(3x-5)=1四、解答题(本大题共7小题,共60分。解答应写出文字说明,证明过程或演算步骤)20. (本小题8分)某同学报名参加
7、学校秋季运动会,有以下5个项目可供选择:径赛项目:100m,200m,1000m(分别用A1,A2,A3表示);田赛项目:跳远,跳高(分别用T1,T2表示)(1)该同学从5个项目中任选一个,恰好是田赛项目的概率为(2)该同学从5个项目中任选两个,求恰好是一个径赛项目和一个田赛项目的概率(请利用列表法或树状图加以说明)21. (本小题8分)如图,在ABC中,AB=AC,AD是BC边上的高,点O是AC的中点,延长DO到E,使OE=OD,连接AE,CE(1)求证:四边形ADCE是矩形;(2)若OE=2,求AB的长22. (本小题8分)如图,RtCEF中,C=90,CEF,CFE外角平分线交于点A,过
8、点A分别作直线CE,CF的垂线,B,D为垂足(1)EAF=_(直接写出结果不写解答过程);(2)求证:四边形ABCD是正方形若BE=EC=3,求DF的长(3)如图(2),在PQR中,QPR=45,高PH=5,QH=2,则HR的长度是_(直接写出结果不写解答过程)23. (本小题8分)某批发商以每件50元的价格购进800件T恤,第一个月以单价80元销售,售出了200件.第二个月如果单价不变,预计仍可售出200件,批发商为增加销售量,决定降价销售,根据市场调查,单价每降低1元,可多售出10件,但最低单价应高于购进的价格.第二个月结束后,批发商将对剩余的T恤一次性清仓销售,清仓时单价为40元,设第二
9、个月单价降低x元(1)填表(不需化简):时间第一个月第二个月清仓时单价/元8040销售量/件200(2)如果批发商希望通过销售这批T恤获利9000元,那么第二个月的单价应是多少元?24. (本小题8分)如图,点O是菱形ABCD对角线的交点,DE/AC,CE/BD,连接OE.求证:OE=BC25. (本小题10分)如图,已知四边形ABCD的对角线AC,BD相交于点O,点M是BC边的中点,过点M作ME/AC交BD于点E,作MF/BD交AC于点F(1)如图,若四边形ABCD是菱形,求证:四边形OEMF是矩形;(2)如图,若四边形ABCD是矩形,则四边形OEMF是(在横线上填一个特殊平行四边形的名称)
10、;(3)如图,若四边形ABCD是矩形,点M是BC延长线上的一个动点,点F落在AC的延长线上,点E落在线段OD上,其余条件不变,写出OB,ME,MF三条线段之间存在的数量关系,并说明理由(本小题10分)如图,四边形ABCD中,AD/BC,ADC=90,AD=8,BC=CD=6,点M从点D出发,以每秒2个单位长度的速度向点A运动,同时,点N从点B出发,以每秒1个单位长度的速度向点C运动当其中一个动点到达终点时,另一个动点也随之停止运动过点N作NPAD于点P,连接AC交NP于点Q,连接MQ,设运动时间为t秒(0t4).(1)连接AN,CP,当t为何值时,四边形ANCP为平行四边形;(2)设四边形DMQC的面积为y,求y与t的函数关系式;(3)在运动过程中,是否存在某一时刻t,使四边形DMQC的面积与ABC的面积相等?若存在,求出t的值;若不存在,请说明理由;(4)将AQM沿AD翻折,得到AKM.在运动过程中,是否存在某时刻t,使四边形AQMK为菱形,若存在,求出t的值;若不存在,请说明理由8