1、复习回顾复习回顾 用样本估计总体有两种用样本估计总体有两种: : 一种是用样本的频率分布估计总体一种是用样本的频率分布估计总体, ,掌握几种掌握几种 用来表示数据的图用来表示数据的图: :频率分布表频率分布表, ,频率分布直频率分布直 方图方图, ,频率分布折线图频率分布折线图, ,频率分布密度曲线频率分布密度曲线, ,茎茎 叶图叶图. . 另一种是用样本的数字特征估计总体的数字另一种是用样本的数字特征估计总体的数字 特征特征. . 频率分布直方图如下频率分布直方图如下: 月均用水量月均用水量 /t 频率频率 组距组距 0.10 0.20 0.30 0.40 0.50 0.5 1 1.5 2
2、2.5 3 3.5 4 4.5 连接频率分布直方图连接频率分布直方图 中各小长方形上端的中各小长方形上端的 中点中点,得到得到频率分布折频率分布折 线图线图 总体密度曲线总体密度曲线 频率频率 组距组距 月均用月均用 水量水量/t a b (图中阴影部分的面积,表示总体在(图中阴影部分的面积,表示总体在 某个区间某个区间 (a, b) 内取值的百分比)。内取值的百分比)。 茎叶图茎叶图 甲甲 乙乙 0 1 2 3 4 5 2 5 4 5 1 1 6 6 7 9 4 9 0 8 6 4 3 8 6 3 9 8 3 1 1. 众数、中位数、平均数 2.2.2 用样本的数字特征估计总用样本的数字特征
3、估计总 体的数字特征体的数字特征 一一 众数、中位数、平均数的概念众数、中位数、平均数的概念 中位数中位数:将一组数据按大小依次排列,:将一组数据按大小依次排列, 把处在最中间位置的一个数据(或最中把处在最中间位置的一个数据(或最中 间两个数据的平均数)叫做这组数据的间两个数据的平均数)叫做这组数据的 中位数中位数 众数众数:在一组数据中,出现次数最多:在一组数据中,出现次数最多 的数据叫做这组数据的众数的数据叫做这组数据的众数 众数、中位数、平均数都是描述一组众数、中位数、平均数都是描述一组 数据的集中趋势的特征数,只是描述的角数据的集中趋势的特征数,只是描述的角 度不同,其中以平均数的应用
4、最为广泛度不同,其中以平均数的应用最为广泛. 平均数: 一组数据的算术平均数,即 (1) x = (x1+x2+xn) /n (2) x = (x1f1+x2f2+xkfk)/n 练习练习: 在一次中学生田径运动会上,在一次中学生田径运动会上, 参加男子跳高的参加男子跳高的17名运动员的成绩如下名运动员的成绩如下 表所示:表所示: 成绩成绩(单单 位:位: 米米) 150 160 165 170 175 180 185 190 人数人数 2 3 2 3 4 1 1 1 分别求这些运动员成绩的众数,中位数与分别求这些运动员成绩的众数,中位数与 平均数平均数 平均数平均数: 一组数据的算术平均数一
5、组数据的算术平均数,即即 解:在解:在17个数据中,个数据中,1.75出现了出现了4次,出现的次,出现的 次数最多,即这组数据的众数是次数最多,即这组数据的众数是1.75 上面表里的上面表里的17个数据可看成是按从小到大个数据可看成是按从小到大 的顺序排列的,其中第的顺序排列的,其中第9个数据个数据1.70是最中间的是最中间的 一个数据,即这组数据的中位数是一个数据,即这组数据的中位数是1.70; 这组数据的平均数是这组数据的平均数是 答:答:17名运动员成绩的众数、中位数、平均数名运动员成绩的众数、中位数、平均数 依次是依次是1.75(米)、(米)、1.70(米)、(米)、1.69(米)(米
6、). 思考:如何从频率分布直方图中估计中位数、思考:如何从频率分布直方图中估计中位数、 众数、平均数?众数、平均数? 二二 、 众数、中位数、平均数众数、中位数、平均数 与频率分布直方图的关系与频率分布直方图的关系 1、众数在样本数据的频率分布直方图众数在样本数据的频率分布直方图 中,就是最高矩形的中点的横坐标。中,就是最高矩形的中点的横坐标。 例如,在上一节调查的例如,在上一节调查的100位居民的月位居民的月 均用水量的问题中,从这些样本数据的频均用水量的问题中,从这些样本数据的频 率分布直方图可以看出,月均用水量的众率分布直方图可以看出,月均用水量的众 数是数是2.25t.如图所示:如图所
7、示: 频率频率 组距组距 0.1 0.2 0.3 0.4 0.5 O 0.5 1 1.5 2 2.5 3 3.5 4 4.5 月平均用水量(t) 2、在样本中,有在样本中,有50的个体小于或等于的个体小于或等于 中位数,也有中位数,也有50的个体大于或等于中位的个体大于或等于中位 数数,因此,在频率分布直方图中,中位数,因此,在频率分布直方图中,中位数 左边和右边的直方图的面积应该相等,由左边和右边的直方图的面积应该相等,由 此可以估计中位数的值。下图中虚线代表此可以估计中位数的值。下图中虚线代表 居民月均用水量的中位数的估计值,此数居民月均用水量的中位数的估计值,此数 据值为据值为2.02t
8、. 频率频率 组距组距 0.1 0.2 0.3 0.4 0.5 O 0.5 1 1.5 2 2.5 3 3.5 4 4.5 月平均用水量(t) 说明说明: 2.02这个中位数的估计值这个中位数的估计值,与样本与样本 的中位数值的中位数值2.0不一样不一样,这是因为样本数这是因为样本数 据的频率分布直方图据的频率分布直方图,只是直观地表明只是直观地表明 分布的形状分布的形状,但是从直方图本身得不出但是从直方图本身得不出 原始的数据内容原始的数据内容,所以由频率分布直方所以由频率分布直方 图得到的中位数估计值往往与样本的图得到的中位数估计值往往与样本的 实际中位数值不一致实际中位数值不一致. 3、
9、平均数是频率分布直方图的“重平均数是频率分布直方图的“重 心”心”. 是直方图的平衡点是直方图的平衡点. n 个样本数据的平均个样本数据的平均 数由公式数由公式: )xxx( n 1 n21 X= 给出给出.下图显示了居民月均用水量的平下图显示了居民月均用水量的平 均数均数: x=2.02 频率频率 组距组距 0.1 0.2 0.3 0.4 0.5 O 0.5 1 1.5 2 2.5 3 3.5 4 4.5 月平均用水量(t) 三三 三种数字特征的优缺点三种数字特征的优缺点 1、众数体现了样本数据的最大集中、众数体现了样本数据的最大集中 点,但它对其它数据信息的忽视使得无点,但它对其它数据信息
10、的忽视使得无 法客观地反映总体特征法客观地反映总体特征.如上例中众数是如上例中众数是 2.25t,它告诉我们它告诉我们,月均用水量为月均用水量为2.25t的的 居民数比月均用水量为其它数值的居民居民数比月均用水量为其它数值的居民 数多数多,但它并没有告诉我们多多少但它并没有告诉我们多多少. 2、中位数是样本数据所占频率、中位数是样本数据所占频率 的等分线,它不受少数几个极端值的的等分线,它不受少数几个极端值的 影响,这在某些情况下是优点,但它影响,这在某些情况下是优点,但它 对极端值的不敏感有时也会成为缺点。对极端值的不敏感有时也会成为缺点。 如上例中假设有某一用户月均用水量如上例中假设有某一
11、用户月均用水量 为为10t,那么它所占频率为,那么它所占频率为0.01,几乎几乎 不影响中位数不影响中位数,但显然这一极端值是不但显然这一极端值是不 能忽视的。能忽视的。 3、由于平均数与每一个样本的、由于平均数与每一个样本的 数据有关,所以任何一个样本数据的数据有关,所以任何一个样本数据的 改变都会引起平均数的改变,这是众改变都会引起平均数的改变,这是众 数、中位数都不具有的性质。也正因数、中位数都不具有的性质。也正因 如此如此 ,与众数、中位数比较起来,平,与众数、中位数比较起来,平 均数可以反映出更多的关于样本数据均数可以反映出更多的关于样本数据 全体的信息,但平均数受数据中的极全体的信
12、息,但平均数受数据中的极 端值的影响较大,使平均数在估计时端值的影响较大,使平均数在估计时 可靠性降低。可靠性降低。 四四 众数、中位数、平均数的众数、中位数、平均数的 简单应用简单应用 例例 某工厂人员及工资构成如下:某工厂人员及工资构成如下: 人员人员 经理经理 管理人员管理人员 高级技工高级技工 工人工人 学徒学徒 合计合计 周工资周工资 2200 250 220 200 100 人数人数 1 6 5 10 1 23 合计合计 2200 1500 1100 2000 100 6900 (1)指出这个问题中周工资的众数、中)指出这个问题中周工资的众数、中 位数、平均数位数、平均数 (2)这
13、个问题中,工资的平均数能客观)这个问题中,工资的平均数能客观 地反映该厂的工资水平吗?为什么?地反映该厂的工资水平吗?为什么? 分析分析:众数为:众数为200,中位数为,中位数为220, 平均数为平均数为300。 因平均数为因平均数为300,由表格中所列,由表格中所列 出的数据可见,只有经理在平均数以出的数据可见,只有经理在平均数以 上,其余的人都在平均数以下,故用上,其余的人都在平均数以下,故用 平均数不能客观真实地反映该工厂的平均数不能客观真实地反映该工厂的 工资水平。工资水平。 练习练习1 在某校初中学生的一次体检中,随机抽取在某校初中学生的一次体检中,随机抽取50名女学名女学 生的体重
14、(单位:千克),分组及各组的频数如下生的体重(单位:千克),分组及各组的频数如下 30,35,1;35,40 ,4; 40,45 , 10; 45,50 ,22; 50,55),),11; 55,60 ,2 试估计该校女生试估计该校女生平均体重平均体重、中位数中位数及及众数众数。 解解:平均体重平均体重 X=32.5I/50+37.54/50+42.510/50+47.522/50+ 52.511/50+57.52/50=46.9 中位数中位数为为45+510/22=47.3 (或或 50-512/22=47.3) 众数众数为为(45+50)/2=47.5 答答:该校女生的平均体重为该校女生的平均体重为46.9千克千克,中位数为中位数为47.3,众数众数 为为47.5 练习练习2 应该采用平均数来表示每一个国家项目的平均金额,应该采用平均数来表示每一个国家项目的平均金额, 因为它能反映所有项目的信息。但平均数会受到极端数因为它能反映所有项目的信息。但平均数会受到极端数 据据2200万元的影响,所以大多数项目投资金额都和平均万元的影响,所以大多数项目投资金额都和平均 数相差比较大。数相差比较大。