1、精品文档 用心整理北师大版七年级上册数学重难点突破知识点梳理及重点题型巩固练习有理数及其运算全章复习与巩固(提高) 【学习目标】 1理解有理数及其运算的意义,提高运算能力2能用数轴上的点表示有理数,会比较有理数的大小;借助数轴理解相反数和绝对值的意义,会求有理数的相反数与绝对值3体会转化、归纳等思想;掌握有理数的加、减、乘、除、乘方及混合运算并能解决简单的实际问题4 会用科学记数法表示数【知识网络】【要点梳理】要点一、有理数的相关概念 1有理数的分类: (1)按定义分类: (2)按性质分类:要点诠释:(1)用正数、负数表示相反意义的量;(2)有理数“0”的作用:作用举例表示数的性质0是自然数、
2、是有理数表示没有3个苹果用+3表示,没有苹果用0表示表示某种状态 表示冰点表示正数与负数的界点0非正非负,是一个中性数2数轴:规定了原点、正方向和单位长度的直线要点诠释:(1)一切有理数都可以用数轴上的点表示出来,数轴上的点不都表示的是有理数,如(2)在数轴上,右边的点所对应的数总比左边的点所对应的数大3相反数:只有符号不同的两个数互称为相反数,0的相反数是0 要点诠释:(1)一对相反数在数轴上对应的点位于原点两侧,并且到原点的距离相等,这两点是关于原点对称的(2)求任意一个数的相反数,只要在这个数的前面添上“”号即可(3)多重符号的化简:数字前面“”号的个数若有偶数个时,化简结果为正,若有奇
3、数个时,化简结果为负4绝对值:(1)代数意义:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0 数a的绝对值记作 (2)几何意义:一个数a的绝对值就是数轴上表示数a的点与原点的距离要点二、有理数的运算 1 法则:(1)加法法则:同号两数相加,取相同的符号,并把绝对值相加绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值一个数同0相加,仍得这个数(2)减法法则:减去一个数,等于加这个数的相反数即a-b=a+(-b) (3)乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘任何数同0相乘,都得0(4)除法法则:除以一个不等于0的数,等于
4、乘这个数的倒数即ab=a(b0) (5)乘方运算的符号法则:负数的奇次幂是负数,负数的偶次幂是正数;正数的任何次幂都是正数,0的任何非零次幂都是0 (6)有理数的混合运算顺序:先乘方,再乘除,最后加减;同级运算,从左到右进行;如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行要点诠释:“奇负偶正”口诀的应用:(1)多重负号的化简,这里奇偶指的是“”号的个数,例如:(3)=3,+(3)=3(2)有理数乘法,当多个非零因数相乘时,这里奇偶指的是负因数的个数,正负指结果中积的符号,例如:(3)(2)(6)=36,而(3)(2)6=36(3)有理数乘方,这里奇偶指的是指数,当底数为负数时,指
5、数为奇数,则幂为负;指数为偶数,则幂为正,例如: , 2运算律: (1)交换律: 加法交换律:a+b=b+a; 乘法交换律:ab=ba;(2)结合律: 加法结合律: (a+b)+c=a+(b+c); 乘法结合律:(ab)c=a(bc) (3)分配律:a(b+c)=ab+ac要点三、有理数的大小比较比较大小常用的方法有:(1)数轴比较法;(2)法则比较法:正数大于0,0大于负数,正数大于负数;两个负数,绝对值大的反而小;(3) 作差比较法(4)作商比较法;(5)倒数比较法要点四、科学记数法 把一个大于10的数表示成的形式(其中1,是正整数),此种记法叫做科学记数法例如:200 000=【典型例题
6、】类型一、有理数相关概念1已知x与y互为相反数,m与n互为倒数,|x+y |+(a-1)20,求a2-(x+y+mn)a+(x+y)2009+(-mn)2010的值【思路点拨】 (1)若有理数x与y互为相反数,则x+y0,反过来也成立 (2)若有理数m与n互为倒数,则mn1,反过来也成立【答案与解析】解:因为x与y互为相反数,m与n互为倒数,(a-1)20, 所以x+y0,mn1,a1, 所以a2-(x+y+mn)a+(x+y)2009+(-mn)2010 a2-(0+1)a+02009+(-1)2010 a2-a+1 a1,原式12-1+11【总结升华】要全面正确地理解倒数,绝对值,相反数等
7、概念举一反三:【变式1】选择题(1)已知四种说法: |a|=a时,a0; |a|=-a时, a0,则( ) Aab0 Ca0且b0 Da0且b0,-2a0,又-a-2a,所以|a|-2a综上所述:当a0时, |a|-2a;当a0时,|a|-2a(3)【总结升华】在解题中合理利用数学思想,是解决问题的有效手段数形结合“以形助数”或“以数解形”使问题简单化,具体化;分类讨论中注意分类的两条原则:分类标准要统一,而且分类要做到不重不漏;转化思想就是把“新知识”转化为“旧知识”,将“未知”转化为“已知” 类型四、规律探索 6下面两个多位数1248624,6248624都是按照如下方法得到的:将第1位数
8、字乘以2,若积为一位数,将其写在第2位;若积为两位数,则将其个位数字写在第2位对第2位数字再进行如上操作得到第3位数字,后面的每一位数字都是由前一位数字进行如上操作得到的当第1位数字是3时,仍按如上操作得到一个多位数,则这个多位数前100位的所有数字之和是( ) A495 B497 C501 D503【思路点拨】多位数1248624是怎么来的?当第1个数字是1时,将第1位数字乘以2得2,将2写在第2位上,再将第2位数字2乘以2得4,将其写在第3位上,将第3位数字4乘以2的8,将8写在第4位上,将第4位数字8乘以2得16,将16的个位数字6写在第5位上,将第5位数字6乘以2得12,将12的个位数
9、字2写在第6位上,再将第6位数字2乘以2得4,将其写在第7位上,以此类推根据此方法可得到第一位是3的多位数后再求和【答案】A【解析】按照法则可以看出此数为362 486 248,后面6248循环,所以前100位的所有数字之和是3+(6+2+4+8)24+6+2+4495,所以选A【总结升华】特例助思,探究规律,这类题主要是通过观察分析,从特殊到一般来总结发现规律,并表示出来举一反三:【变式】世界上著名的莱布尼茨三角形如图所示,则排在第10行从左边数第3个位置上的数是( )A B C D【答案】B提示:观察发现:分子总是1,第n行的第一个数的分母就是n,第二个数的分母是第一个数的(n-1)倍,第三个数的分母是第二个数的分母的倍根据图表的规律,则第10行从左边数第3个位置上的数是资料来源于网络 仅供免费交流使用