1、导入新课讲授新课当堂练习课堂小结19.2.2 一次函数第十九章 一次函数第3课时 用待定系数法求一次函数的解析式 义务教育教科书义务教育教科书(RJ)(RJ)八下八下数学课件课件情境引入学习目标1.理解待定系数法的意义.2.会用待定系数法求一次函数的解析式.(重点、难点)导入新课导入新课前面,我们学习了一次函数及其图象和性质,你能写出两个具体的一次函数解析式吗?如何画出它们的图象?思考:反过来,已知一个一次函数的图象经过两个具体的点,你能求出它的解析式吗?23=-+yx31=-yx两点法两点确定一条直线问题引入讲授新课讲授新课用待定系数法求一次函数的解析式如图,已知一次函数的图象经过P(0,-
2、1),Q(1,1)两点.怎样确定这个一次函数的解析式呢?合作探究 因为一次函数的一般形式是y=kx+b(k,b为常数,k0),要求出一次函数的解析式,关键是要确定k和b的值(即待定系数).函数解析式y=kx+b满足条件的两点(x1,y1),(x2,y2)一次函数的图象直线l选取解出画出选取P(0,-1)和Q(1,1)都在该函数图象上,它们的坐标应满足y=kx+b,将这两点坐标代入该式中,得到一个关于k,b的二元一次方程组:k0+b=-1,k+b=1,解这个方程组,得k=2,b=-1.这个一次函数的解析式为y=2x-1.像这样,通过先设定函数解析式(确定函数模型),再根据条件确定解析式中的未知系
3、数,从而求出函数解析式的方法称为待定系数法.知识要点做一做 已知一次函数的图象过点(3,5)与(-4,-9),求这个一次函数的解析式 解:设这个一次函数的解析式为y=kx+b.3k+b=5,-4k+b=-9,这个一次函数的解析式为 解方程组得 b=-1.把点(3,5)与(-4,-9)分别代入,得:k=2,y=2x-1.(1)设:设一次函数的一般形式 ;(2)列:把图象上的点 ,代入一次函数的解析式,组成_方程组;(3)解:解二元一次方程组得k,b;(4)还原:把k,b的值代入一次函数的解析式.求一次函数解析式的步骤:11,yx22,yxy=kx+b(k0)二元一次归纳总结例1.若一次函数的图象
4、经过点 A(2,0)且与直线y=-x+3平行,求其解析式.解:设这个一次函数的解析式为y=kx+b.k=-1,2k+b=0,由题意得k=-1,b=2.解得y=-x+2.典例精析例2 已知一次函数的图象过点(0,2),且与两坐标轴围成的三角形的面积为2,求此一次函数的解析式.分析:一次函数y=kx+b与y轴的交点是(0,b),与x轴的交点是(,0).由题意可列出关于k,b的方程.bkyxO2注意:此题有两种情况.解:设一次函数的解析式为y=kx+b(k0)一次函数y=kx+b的图象过点(0,2),b=2 一次函数的图象与x轴的交点是(,0),则 解得k=1或-1.故此一次函数的解析式为y=x+2
5、或y=-x+2.1222,2k 2k正比例函数y=k1x与一次函数y=k2x+b的图象如图所示,它们的交点A的坐标为(3,4),并且OB=5.(1)你能求出这两个函数的解析式吗?(2)AOB的面积是多少呢?做一做分析:由OB=5可知点B的坐标为(0,-5).y=k1x的图象过点A(3,4),y=k2x+b的图象过点A(3,4),B(0,-5),代入解方程(组)即可.已知一次函数y=kx+b(k0)的自变量的取值范围是 3x 6,相应函数值的范围是 5y 2,求这个函数的解析式.能力提升分析:(1)当 3x 6时,5y 2,实质是给出了两组自变量及对应的函数值;(2)由于不知道函数的增减性,此题
6、需分两种情况讨论.答案:114333yxyx=-=-或当堂练习当堂练习1.一次函数y=kx+b(k0)的图象如图,则下列结论正确的是 ()Ak=2Bk=3Cb=2Db=3DyxO232.如图,直线l是一次函数y=kx+b的图象,填空:(1)b=_,k=_;(2)当x=30时,y=_;(3)当y=30时,x=_.123451234Oxy223-18-42lyx解:设直线l为y=kx+b,l与直线y=-2x平行,k=-2.又直线过点(0,2),2=-20+b,b=2,直线l的解析式为y=-2x+2.3.已知直线l与直线y=-2x平行,且与y轴交于点(0,2),求直线l的解析式.4.若一直线与另一直线y=-3x+2交于y轴同一点,且过(2,-6),你能求出这条直线的解析式吗?答案:y=-4x+2分析:直线y=-3x+2与y轴的交点为(0,2),于是得知该直线过点(0,2),(2,-6),在用待定系数法求解即可.课堂小结课堂小结用待定系数法求一次函数的解析式2.根据已知条件列出关于k,b的方程(组);1.设所求的一次函数解析式为y=kx+b;3.解方程,求出k,b;4.把求出的k,b代回解析式即可.见本课时练习课后作业课后作业