1、 1 蚌埠市 2017届高三年级 期末 教学质量检查考试 数 学(文史类) 本试卷分第 I卷(选择题)和第卷(非选择题)两部分,共 I50分,考试时间 120分钟 第 I卷(选择题,共 60分) 一、选择题:本大题共 12 小题,每小题 5分,共 60分,在每小题给出的 A, B, C, D的四个选项中,只有一个选项是符合题目要求的,请将正确答案的字母代号涂到答题卷相应 位置 1已知全集是实数集 R,集合 M=x| -2 x 2,集合 N=x|x1”的 A充分且不必要条件 B必要且不充分条件 C充要条件 D既非充分也非必要条件 6已知非零向量 m, n满足 3|m|=2|n|, =60,若 n
2、 (tm+n)则实数 t的值为 A 3 B -3 C 2 D -2 7 M是抛物线 C:y2= 2px(p0)上一点, F 是抛物线 C 的焦点, D为坐标原点,若 | MF|= p, K 是抛物线C准线与 x轴的交点,则 MKO= A 15 B 30 C 45 D 60 8函数 y= sin( 2x十 )( 00, b0)的渐近线与圆( x- ) 2+ y2=1相切,则此双曲线的离心率为 _ 15孙子算经是我国古代内容极其丰富的数学名著,书中有如下问题:“今有圆窖周五丈四尺,深一丈八尺,问受粟几何?”其意思为:“有圆柱形容器,底面圆周长五丈四尺,高一丈八尺, 求此容器能放多少斛米”(古制 1
3、丈 = 10 尺, 1斛 =1.62立方尺,圆周率 =3),则该圆柱形容器能放米 _斛 16.在 ABC中,角 A, B, C所对的边分别为 a, b, c,其中 a=2, c=3,且满足( 2a -c) cosB=b cosC,则 ABBC = 三、解答题:本大题共 6小题,共 70 分解答须写出说明、证明过程和演算步骤 17.(本小题满分 12分) 已知数列 an的前 n项和为 Sn,对一切正整数 n,点 Pn(n, Sn)都在函数 f(x)=x2+ 2x的图像上,且过点 Pn(n, Sn)的切线的斜率为 k。 (I)求数列 an的通项公式; ( )若 bn = ,求数列 bn的 前 n项
4、和 Tn. 18.(本小题满分 12分) 3 某公司的招聘考试有编号分别为 1, 2, 3 的三个不 同的 4 类基 本题和一道 A 类附加题:另有编号分别为 4, 5的两个不同的 B类基本题和一道 B类附加题。甲从这五个基本题中一次随机抽取两道 题,每题做对做错及每题被抽到的概率是相等的 (I)用符号( x, y)表示事件“抽到的两题的编号分别为 x、 y,且 xb0)的离心率为 154 , F1, F2是椭圆的两个焦点,P是椭圆上任意一点,且 PF1F2的周长是 8+2 15 , ( I)求椭圆 C的方程 ; ( )设圆 T: (x一 2)2 +y2=49 , 过椭圆的上顶点 M作圆 T的
5、两 条切线交椭圆于 E、 F两点,求直线 EF 的斜率 21.(本小题满分 12分) 已知函数 f(x)=x3+ ax2一 a2x -1, a0 ( I)当 a=2时,求函数 f(x)的单调区间; ( )若关于 x的不等式 f(x) 0在 1, +)上有解,求 a的取值范围, 请考生在 2223两题中任选一题作答,如果多做,则按所做的第一题记分 22.(本小题满分 10分)选 修 4-4:坐标系与参数方程 在直角坐标系 xOy中,直线 Z的参数方程为 ( t为参数),在极坐标系(与直角坐标系 xOy取相同的长度单位,且以原点 O为极点,以 x轴非负半轴为极轴)中,圆 C的方程为 = 6sin . ( I)求直角坐标下圆 C的标准方程; ( )若点 P(l, 2),设圆 C 与直线 l交于点 A, B,求 |PA|+|PB|的值 23.(本小题满分 10分)选修 4-5:不等式选讲 已知函数 f(x)=|2x-a|+|2x +3|, g( x) =|x-1|+2. ( I)解不等式 g( x) 5; ( )若对任意 x1 R,都存在 x2 R,使得 (x1)=g( x2)成立,求实 数 a的取值范围 4 5 6 7