( 高中数学讲义)空间几何量的计算.板块五.证明与计算(距离).学生版.doc

上传人(卖家):四川天地人教育 文档编号:1686196 上传时间:2021-08-26 格式:DOC 页数:6 大小:545KB
下载 相关 举报
( 高中数学讲义)空间几何量的计算.板块五.证明与计算(距离).学生版.doc_第1页
第1页 / 共6页
( 高中数学讲义)空间几何量的计算.板块五.证明与计算(距离).学生版.doc_第2页
第2页 / 共6页
亲,该文档总共6页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

1、【学而思高中数学讲义】 典例分析 【例 1】 已知三棱锥PABC中,PC 底面ABC,ABBC,DF,分别为ACPC,的中 点,DEAP于E 求证:AP 平面BDE; 求证:平面BDE 平面BDF; 若:1:2AE EP ,求截面BEF分三棱锥PABC所成两部分的体积比 F E B D C A P 【例 2】 如图,已知 111 ABCABC是正三棱柱,D是AC的中点, 1 21ABAA, 证明:BD 平面 11 ACC A, 1/ / AB平面 1 BDC; 求点D到平面 11 BCC B的距离 证明: 11 ABBC ? D ? C ? B ? A ? A ? 1 ? B ? 1 ? C

2、? 1 【例 3】 (2010 年二模年二模崇文崇文文文题题 16) 正方体 1111 ABCDABC D的棱长为2,O是AC与BD的交点,E为 1 BB的中点 板块五.证明与计算(距离) 【学而思高中数学讲义】 求证:直线 1 B D平面AEC; 求证: 1 B D 平面 1 D AC; 求三棱锥 1 DDOC的体积 【例 4】 如图如图,ACD和和ABC都是直角三角形都是直角三角形,ABBC,30CAD , ,把三角形把三角形ABC 沿沿AC边折起,使边折起,使ABC所在的平面与所在的平面与ACD所在的平面垂直,若所在的平面垂直,若6AB 求证:面求证:面ABD面面BCD;求求C点到平面点

3、到平面ABD的距离的距离 【例 5】 (2010 年二模年二模东城东城文文题题 17) 如图, 四棱锥PABCD中,PD 平面ABCD, 底面ABCD为矩形,4PDDC, 2AD ,E为PC的中点 求证:ADPC; 求三棱锥APDE的体积; AC边上是否存在一点M,使得PA平面EDM,若存在,求出AM的长;若 不存在,请说明理由 【学而思高中数学讲义】 【例 6】 已知长方体已知长方体 1111 ABCDABC D中,棱中,棱1ABAD,棱,棱 1 2AA 求点求点 1 A到平面到平面 11 AB D的距离的距离 连结连结 1 AB,过点,过点A作作 1 AB的垂线交的垂线交 1 BB于于E,

4、交,交 1 AB于于F ? H ? O ? A ? B ? C ? D ? A ? 1 ? B ? 1 ? C ? 1 ? D ? 1 求证:求证: 1 BD平面平面EAC; 求点求点D到平面到平面 11 ABD的距离的距离 【例 7】 (2010 年一模年一模崇文崇文文文题题 17) 三棱柱 111 ABCABC中, 侧棱与底面垂直,90ABC , 1 2ABBCBB,,M N 分别是AB, 1 AC的中点 求证:MN 平面 11 BCC B; 求证:MN 平面 11 ABC; 求三棱锥M 11 ABC的体积 【学而思高中数学讲义】 ? N ? M ? C ? 1 ? B ? 1 ? A ?

5、 1 ? C ? B ? A 【例 8】 已知直三棱柱已知直三棱柱 111 ABCABC中中,90ACB,1CB , 1 36,CAAA,M是是 侧棱侧棱 1 CC的中点的中点求证:求证: 1 AMBA;求点求点C到平面到平面ABM的距离的距离 ? M ? C ? 1 ? B ? 1 ? A ? 1 ? C ? B ? A 【例 9】 (2010 年一模年一模东城东城文文题题 17) 三棱柱 111 ABCABC中, 1 CC 平面ABC,ABC是边长为2的等边三角形,D为 AB边中点,且 1 2CCAB 求证:平面 1 C CD 平面ABC; 求证: 1 AC 平面 1 CDB; 求三棱锥

6、1 DCBB的体积 【学而思高中数学讲义】 ? C ? 1 ? B ? 1 ? A ? 1 ? D ? C ? B ? A 【例 10】如图所示, 正四棱柱 1111 ABCDABC D中, 底面边长为2 2, 侧棱长为4EF, 分别为棱ABBC,的中点,EFBDG 求证:平面 1 B EF 平面 11 BDD B; 求点 1 D到平面 1 B EF的距离d; 求三棱锥 11 BEFD的体积V ? D ? 1 ? C ? 1 ? B ? 1 ? A ? 1 ? G ? F ? E ? D ? C ? B ? A 【例 11】(2008 新课标山东) 如图,在四棱锥PABCD中,平面PAD 平面

7、ABCD,ABDC,PAD是等 边三角形,已知28BDAD,24 5ABDC 设M是PC上的一点,证明:平面MBD 平面PAD; 求四棱锥PABCD的体积 ? M ? D ? C ? B ? A ? P 【例 12】如图,四棱锥PABCD的底面是正方形,PA 底面ABCD,2PA , 45PDA,点E、F分别为棱AB、PD的中点 【学而思高中数学讲义】 ? F ? E ? D ? C ? B ? A ? P 【例 13】(2010 年一模年一模文科文科题题 17) 如图: 在四棱锥PABCD中, 底面ABCD是菱形,60ABC,PA 平面ABCD, 点M、N分别为BC、PA的中点,且2PAAB 证明:BC 平面AMN; 求三棱锥NAMC的体积; 在线段PD上是否存在一点E,使得NM 平面ACE;若存在,求出PE的长; 若不存在,说明理由 【例 14】已知直三棱柱已知直三棱柱 111 ABCABC中中,90ACB,1CB , 1 36,CAAA, M是侧棱是侧棱 1 CC的中点的中点求证:求证: 1 AMBA;求点求点C到平面到平面ABM的距离的距离 ? M ? C ? 1 ? B ? 1 ? A ? 1 ? C ? B ? A

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 高中 > 数学 > 高考专区 > 一轮复习
版权提示 | 免责声明

1,本文(( 高中数学讲义)空间几何量的计算.板块五.证明与计算(距离).学生版.doc)为本站会员(四川天地人教育)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!


侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|