1、 线 封 密 内 号学级年名姓 线 封 密 外 2022年四川省内江市中考数学三年高频真题汇总 卷() 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图所示,该几何体的俯视图是ABCD2、下列计算正确的
2、是( )ABCD3、下列各组图形中一定是相似形的是( )A两个等腰梯形B两个矩形C两个直角三角形D两个等边三角形4、在数2,2,中,最小的数为( )A2BCD25、如果与的差是单项式,那么、的值是( )A,B,C,D,6、下列关于整式的说法错误的是( )A单项式的系数是-1B单项式的次数是3C多项式是二次三项式D单项式与ba是同类项7、若单项式与是同类项,则的值是( )A6B8C9D128、下列利用等式的性质,错误的是( )A由,得到B由,得到C由,得到D由,得到9、若实数m使关于x的不等式组有解且至多有3个整数解,且使关于y的分式方程1的解满足3y4,则满足条件的所有整数m的和为()A17B
3、20C22D2510、如图,ACDF,下列条件中不能判断ABCDEF的是( )AEFBCBCBEDABDE 线 封 密 内 号学级年名姓 线 封 密 外 第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在ABC中,点D、E分别在边AB、AC上,DEBC,将ADE沿直线DE翻折后与FDE重合,DF、EF分别与边BC交于点M、N,如果DE8,那么MN的长是_2、己知等腰三角形两条边长分别是4和10,则此三角形的周长是_3、如图,BD是ABC的角平分线,E是AB上的中点,已知ABC的面积是12cm2,BC:AB19:17,则AED面积是 _4、某水果基地为提高效益,对甲
4、、乙、丙三种水果品种进行种植对比研究去年甲、乙、丙三种水果的种植面积之比为5:3:2,甲、乙、丙三种水果的平均亩产量之比为6:3:5今年重新规划三种水果的种植面积,三种水果的平均亩产量和总产量都有所变化甲品种水果的平均亩产量在去年的基础上提高了50%,乙品种水果的平均亩产量在去年的基础上提高了20%,丙品种的平均亩产量不变其中甲、乙两种品种水果的产量之比为3:1,乙、丙两种品种水果的产量之比为6:5,丙品种水果增加的产量占今年水果总产量的,则三种水果去年的种植总面积与今年的种植总面积之比为_5、如图,中,将绕原点O顺时针旋转90,则旋转后点A的对应点的坐标是_三、解答题(5小题,每小题10分,
5、共计50分)1、解方程:2、永辉超市计划购进甲、乙两种体育器材,若购进甲器材3件,乙器材6件,需要480元,购进甲器材2件,乙器材3件,需要280元,销售每件甲器材的利润率为37.5%,销售每件乙器材的利润率为30%(1)甲、乙两种体育器材进价分别为多少元/件?(列方程或方程组解答)(2)该超市决定购进甲、乙体育器材100件,并且考虑市场需求和资金周转,用于购进这些体育器材的资金不少于6300元,同时又不能超过6430元,则该超市有哪几种进货方案?那种方案获利最大?最大利润是多少元?3、己知x,y满足先化简,再求值:4、计算:(1)(2)5、计算:(1)(2) 线 封 密 内 号学级年名姓 线
6、 封 密 外 -参考答案-一、单选题1、D【分析】根据俯视图是从物体上面向下面正投影得到的投影图,即可求解【详解】解:根据题意得:D选项是该几何体的俯视图故选:D【点睛】本题主要考查了几何体的三视图,熟练掌握三视图是观测者从三个不同位置观察同一个几何体,画出的平面图形;(1)主视图:从物体前面向后面正投影得到的投影图,它反映了空间几何体的高度和长度;(2)左视图:从物体左面向右面正投影得到的投影图,它反映了空间几何体的高度和宽度;(3)俯视图:从物体上面向下面正投影得到的投影图,它反应了空间几何体的长度和宽度是解题的关键2、D【分析】直接根据合并同类项运算法则进行计算后再判断即可【详解】解:A
7、. ,选项A计算错误,不符合题意;B. ,选项B计算错误,不符合题意;C. ,选项C计算错误,不符合题意;D. ,计算正确,符合题意故选:D【点睛】本题主要考查了合并同类项,熟练掌握合并同类项法则是解答本题的关键3、D【分析】根据相似形的形状相同、大小不同的特点,再结合等腰梯形、矩形,直角三角形、等边三角形的性质与特点逐项排查即可【详解】解:A、两个等腰梯形的形状不一定相同,则不一定相似,故本选项错误;B、两个矩形的形状不一定相同,则不一定相似,故本选项错误;C、两个直角三角形的形状不一定相同,则不一定相似,故本选项错误;D、两个等边三角形的大小不一定相同,但形状一定相同,则一定相似,故本选项
8、正确故选D【点睛】本题主要考查了相似图形的定义,理解相似形的形状相同、大小不同的特点成为解答本题的关键4、A【分析】根据正数大于0,负数小于0,正数大于一切负数,两个负数,绝对值大的反而小比较即可【详解】解:,-22,故选A【点睛】 线 封 密 内 号学级年名姓 线 封 密 外 本题考查了有理数的大小比较,熟练掌握有理数大小比较的方法是解答本题的关键5、C【分析】根据与的差是单项式,判定它们是同类项,根据同类项的定义计算即可【详解】与的差是单项式,与是同类项,n+2=3,2m-1=3,m=2, n=1,故选C【点睛】本题考查了同类项即含有的字母相同,且相同字母的指数也相同,准确判断同类项是解题
9、的关键6、C【分析】根据单项式系数和次数的定义,多项式的定义,同类项的定义逐一判断即可【详解】解:A、单项式的系数是-1,说法正确,不符合题意;B、单项式的次数是3,说法正确,不符合题意;C、多项式是三次二项式,说法错误,符合题意;D、单项式与ba是同类项,说法正确,不符合题意;故选C【点睛】本题主要考查了单项式的次数、系数的定义,多项式的定义,同类项的定义,解题的关键在于能够熟知相关定义:表示数或字母的积的式子叫做单项式,单独的一个数或一个字母也是单项式,单项式中数字因数叫做这个单项式的系数,所有字母的指数之和叫做单项式的次数;几个单项式的和的形式叫做多项式,每个单项式叫做多项式的项,不含字
10、母的项叫做常数项,多项式里,次数最高项的次数叫做多项式的次数;同类项的定义:如果两个单项式所含的字母相同,相同字母的指数也相同,那么这两个单项式就叫做同类项7、C【分析】根据同类项的定义可得,代入即可求出mn的值【详解】解:与是同类项,解得:m=3,故选:C【点睛】此题考查了同类项的定义,解题的关键是熟练掌握同类项的定义同类项:如果两个单项式,他们所含的字母相同,并且相同字母的指数也相同,那么就称这两个单项式为同类项8、B【分析】根据等式的性质逐项分析即可【详解】 线 封 密 内 号学级年名姓 线 封 密 外 A.由,两边都加1,得到,正确;B.由,当c0时,两边除以c,得到,故不正确;C.由
11、,两边乘以c,得到,正确;D.由,两边乘以2,得到,正确;故选B【点睛】本题考查了等式的基本性质,正确掌握等式的性质是解题的关键等式的基本性质1是等式的两边都加上(或减去)同一个整式,所得的结果仍是等式;等式的基本性质2是等式的两边都乘以(或除以)同一个数(除数不能为0),所得的结果仍是等式9、B【分析】根据不等式组求出m的范围,然后再根据分式方程求出m的范围,从而确定的m的可能值【详解】解:由不等式组可知:x5且x,有解且至多有3个整数解,25,2m8,由分式方程可知:y=m-3,将y=m-3代入y-20,m5,-3y4,-3m-34,m是整数,0m7,综上,2m7,所有满足条件的整数m有:
12、3、4、6、7,共4个,和为:3+4+6+7=20故选:B【点睛】本题考查了学生的计算能力以及推理能,解题的关键是根据不等式组以及分式方程求出m的范围,本题属于中等题型10、A【分析】利用先证明结合已有的条件 再对每个选项添加的条件逐一分析,即可得到答案.【详解】解:如图, 所以添加EFBC,不能判定ABCDEF,故A符合题意;延长 交于 添加, 线 封 密 内 号学级年名姓 线 封 密 外 ABCDEF,故B,C不符合题意;添加ABDE,能判定ABCDEF,故D不符合题意;故选A【点睛】本题考查的是添加一个条件判定两个三角形全等,熟练的掌握“利用判定三角形全等”是解本题的关键.二、填空题1、
13、4【分析】先根据折叠的性质得DADF,ADEFDE,再根据平行线的性质和等量代换得到BBMD,则DBDM,接着利用比例的性质得到FMDM,然后证明FMNFDE,从而利用相似比可计算出MN的长【详解】解:ADE沿直线DE翻折后与FDE重合,DADF,ADEFDE,DEBC,ADEB,FDEBMD,BBMD,DBDM, ,2,2,FMDM,MNDE,FMNFDE, ,MNDE84故答案为:4【点睛】本题主要考查了相似三角形的判定和性质,平行线分线段成比例,图形的折叠,熟练掌握相似三角形的判定和性质,平行线分线段成比例,图形的折叠性质是解题的关键2、24【分析】分两种情考虑:腰长为4,底边为10;腰
14、长为10,底边为4根据这两种情况即可求得三角形的周长【详解】当腰长为4,底边为10时,因4+410,则不符合构成三角形的条件,此种情况不存在;当腰长为10,底边为4时,则三角形的周长为:10+10+4=24故答案为:24【点睛】本题考查了等腰三角形的性质及周长,要注意分类讨论 线 封 密 内 号学级年名姓 线 封 密 外 3、【分析】根据角平分线的性质得出DF=DG,再由三角形面积计算即可得答案【详解】解:作DGAB,交AB的延长线于点D,作DFBC,BD是ABC的角平分线,DF=DG,BC:AB19:17,设DF=DG=h,BC=19a,AB=17a,ABC的面积是12cm2,36ah=24
15、,ah=,E是AB上的中点,AE=,AED面积=h=(cm2)故答案为:cm2【点睛】本题考查了根据角平分线的性质和三角形面积的计算,做题的关键是掌握角平分线的性质4、#【分析】设去年甲、乙、丙三种水果的种植面积分别为: 设去年甲、乙、丙三种水果的平均亩产量分别为: 设今年的种植面积分别为: 再根据题中相等关系列方程:,求解: 再利用丙品种水果增加的产量占今年水果总产量的,列方程 求解 从而可得答案.【详解】解: 去年甲、乙、丙三种水果的种植面积之比为5:3:2,设去年甲、乙、丙三种水果的种植面积分别为: 去年甲、乙、丙三种水果的平均亩产量之比为6:3:5,设去年甲、乙、丙三种水果的平均亩产量
16、分别为: 则今年甲品种水果的平均亩产量为: 乙品种水果的平均亩产量为: 丙品种的平均亩产量为 设今年的种植面积分别为: 甲、乙两种品种水果的产量之比为3:1,乙、丙两种品种水果的产量之比为6:5, 线 封 密 内 号学级年名姓 线 封 密 外 ,解得: 又丙品种水果增加的产量占今年水果总产量的, 解得: 所以三种水果去年的种植总面积与今年的种植总面积之比为: 故答案为:【点睛】本题考查的是三元一次方程组的应用,设出合适的未知数与参数,确定相等关系,建立方程组,寻求未知量之间的关系是解本题的关键.5、【分析】如图(见解析),过点作轴于点,点作轴于点,设,从而可得,先利用勾股定理可得,从而可得,再
17、根据旋转的性质可得,然后根据三角形全等的判定定理证出,最后根据全等三角形的性质可得,由此即可得出答案【详解】解:如图,过点作轴于点,点作轴于点,设,则,在中,在中,解得,由旋转的性质得:,在和中, 线 封 密 内 号学级年名姓 线 封 密 外 ,故答案为:【点睛】本题考查了勾股定理、旋转、点坐标等知识点,画出图形,通过作辅助线,正确找出两个全等三角形是解题关键三、解答题1、【分析】先移项,再计算即可求解【详解】解: ,解得: 【点睛】本题主要考查了解方程,熟练掌握解方程的基本步骤是解题的关键2、(1)甲、乙两种体育器材进价分别为80元/件,40元/件(2)见解析【分析】(1)设甲器材的进价为x
18、元/件,乙器材的进价为y元/件,得出关于x,y的二元一次方程组,解之即可得出结论;(2)设购进甲器材z件,根据题意列出不等式组,求出整数解,得到三种方案,分别计算三种方案的利润,比较即可(1)解:设甲器材的进价为x元/件,乙器材的进价为y元/件,由题意可得:,解得:,甲、乙两种体育器材进价分别为80元/件,40元/件;(2)设购进甲器材z件,由题意可得:,解得:,z的取值为58,59,60,方案一:当z=58时,即甲器材58件,乙器材42件,利润为:元;方案二:当z=59时,即甲器材59件,乙器材41件,利润为:元;方案三:当z=60时,即甲器材60件,乙器材40件,利润为:元;方案三的利润最
19、大,最大利润为2280元 线 封 密 内 号学级年名姓 线 封 密 外 【点睛】本题考查了二元一次方程组的应用以及一元一次不等式组的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式组,由两种商品利润间的关系,找出获利最大的进货方案3、,2【分析】先利用平方差公式,完全平方公式单项式乘以多项式法则计算合并同类项,再计算多项式除以单项式,然后根据非负数性质求出字母的值,再代入计算即可【详解】解:原式,;又,原式=【点睛】本题考查条件化简求值,非负数性质,乘法公式,掌握条件化简求值,非负数性质,乘法公式是解题关键4、(1)4(2)16
20、【分析】(1)直接利用有理数的加减法计算即可;(2)利用求一个数的立方根、算术平方根、有理数的乘方按顺序进行计算即可(1)解:原式,4;(2)解:原式,【点睛】本题考查了有理数的加减、算术平方根、立方根,有理数的乘方,解题的关键是掌握相应的运算法则5、(1)2(2)-2【解析】(1)解:=2-5+4+7-6=2+4+7-5-6=13-11=2;(2) 线 封 密 内 号学级年名姓 线 封 密 外 解:=-2【点睛】本题考查了有理数的混合运算,有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化