1、第七章不等式、推理与证明,-2-,7.1二元一次不等式(组) 与简单的线性规划问题,-4-,知识梳理,双基自测,2,1,自测点评,1.二元一次不等式表示的平面区域(1)一般地,二元一次不等式Ax+By+C0在平面直角坐标系中表示直线Ax+By+C=0某一侧所有点组成的.我们把直线画成虚线以表示区域边界直线.当我们在平面直角坐标系中画不等式Ax+By+C0所表示的平面区域时,此区域应边界直线,则把边界直线画成.(2)因为对直线Ax+By+C=0同一侧的所有点(x,y),把它的坐标(x,y)代入Ax+By+C,所得的符号都,所以只需在此直线的同一侧取一个特殊点(x0,y0)作为测试点,由Ax0+B
2、y0+C的即可判断Ax+By+C0表示的是直线Ax+By+C=0哪一侧的平面区域.,平面区域,不包括,包括,实线,相同,符号,-5-,知识梳理,双基自测,2,1,自测点评,(3)利用“同号上,异号下”判断二元一次不等式表示的平面区域:对于Ax+By+C0或Ax+By+C0时,区域为直线Ax+By+C=0的;当B(Ax+By+C)0表示的平面区域一定在直线x-y-1=0的上方.()(2)两点(x1,y1),(x2,y2)在直线Ax+By+C=0异侧的充要条件是(Ax1+By1+C)(Ax2+By2+C)0所表示的平面区域内,则m的取值范围是()A.m1B.m1C.m1,答案,-10-,知识梳理,
3、双基自测,自测点评,2,3,4,1,5,A.1B.3C.5D.9,答案,解析,-11-,知识梳理,双基自测,自测点评,2,3,4,1,5,答案,解析,-12-,知识梳理,双基自测,自测点评,1.当二元一次不等式组中的不等式所表示的区域没有公共部分时,就无法表示平面上的一个区域.2.线性目标函数都是通过平移直线,在与可行域有公共点的情况下,分析其在y轴上的截距的取值范围,所以取得最值的点一定在可行域的顶点或边界上.3.求线性目标函数z=ax+by(ab0)的最值,当b0时,若直线过可行域且在y轴上截距最大,则z值最大;若在y轴上截距最小,则z值最小;当b0时,则相反.,-13-,考点1,考点2,
4、考点3,思考如何确定二元一次不等式(组)表示的平面区域?,-14-,考点1,考点2,考点3,答案:(1)C(2)D,-15-,考点1,考点2,考点3,-16-,考点1,考点2,考点3,解题心得确定二元一次不等式(组)表示的平面区域的方法:(1)“直线定界,特殊点定域”,即先作直线,再取特殊点并代入不等式(组).若满足不等式(组),则不等式(组)表示的平面区域为直线与特殊点同侧的那部分区域;否则就表示直线与特殊点异侧的那部分区域.(2)若不等式带等号,则边界为实线;若不等式不带等号,则边界为虚线.,-17-,考点1,考点2,考点3,-18-,考点1,考点2,考点3,-19-,考点1,考点2,考点
5、3,(2)两条直线方程分别为x-2y+2=0与x+y-1=0.把x=0,y=0代入x-2y+2得2,可知直线x-2y+2=0右下方所表示的二元一次不等式为x-2y+20,把x=0,y=0代入x+y-1得-1,可知直线x+y-1=0右上方所表示的二元一次不等式为x+y-10,-20-,考点1,考点2,考点3,考向一求线性目标函数的最值,A.0B.1C.2D.3思考怎样利用可行域求线性目标函数的最值?,答案,解析,-21-,考点1,考点2,考点3,考向二已知目标函数的最值求参数的取值A.-1,2B.-2,1C.-3,-2D.-3,1思考如何利用可行域及最优解求参数及其范围?,答案,解析,-22-,
6、考点1,考点2,考点3,考向三求非线性目标函数的最值A.4B.9C.10D.12思考如何利用可行域求非线性目标函数最值?,答案,解析,-23-,考点1,考点2,考点3,解题心得1.利用可行域求线性目标函数最值的方法:首先利用约束条件作出可行域,然后根据目标函数找到最优解时的点,最后把解得点的坐标代入求解即可.2.利用可行域及最优解求参数及其范围的方法:(1)若限制条件中含参数,依据参数的不同范围将各种情况下的可行域画出来,寻求最优解,确定参数的值;(2)若线性目标函数中含有参数,可对线性目标函数的斜率分类讨论,以此来确定线性目标函数经过哪个顶点取得最值,从而求出参数的值;也可以直接求出线性目标
7、函数经过各顶点时对应的参数的值,然后进行检验,找出符合题意的参数值.3.利用可行域求非线性目标函数最值的方法:画出可行域,分析目标函数的几何意义是斜率问题还是距离问题,依据几何意义可求得最值.,-24-,考点1,考点2,考点3,-25-,考点1,考点2,考点3,答案,-26-,考点1,考点2,考点3,解析:(1)画出不等式组所表示的平面区域如图所示,结合目标函数z=2x+y的几何意义,可得z在点B(-6,-3)处取得最小值,即zmin=-12-3=-15,故选A.,-27-,考点1,考点2,考点3,可知点A(1,1)在直线3x-y-a=0上,即3-1-a=0,解得a=2.故选A.,-28-,考
8、点1,考点2,考点3,(3)作出约束条件所表示的平面区域如图(阴影部分),其中A(0,1),B(1,0),C(3,4).,-29-,考点1,考点2,考点3,(4)如图所示,不等式组表示的平面区域是ABC的内部(含边界),x2+y2表示的是此区域内的点(x,y)到原点距离的平方.从图中可知最短距离为原点到直线BC的距离,其值为1;最远距离为AO,其值为2,故x2+y2的取值范围是1,4.,-30-,考点1,考点2,考点3,例5(2017天津,文16)电视台播放甲、乙两套连续剧,每次播放连续剧时,需要播放广告.已知每次播放甲、乙两套连续剧时,连续剧播放时长、广告播放时长、收视人次如下表所示:,已知
9、电视台每周安排的甲、乙连续剧的总播放时间不多于600 min,广告的总播放时间不少于30 min,且甲连续剧播放的次数不多于乙连续剧播放次数的2倍.分别用x,y表示每周计划播出的甲、乙两套连续剧的次数.,-31-,考点1,考点2,考点3,(1)用x,y列出满足题目条件的数学关系式,并画出相应的平面区域;(2)问电视台每周播出甲、乙两套连续剧各多少次,才能使总收视人次最多?思考求解线性规划的实际问题要注意什么?,-32-,考点1,考点2,考点3,该二元一次不等式组所表示的平面区域为图1中的阴影部分:,-33-,考点1,考点2,考点3,(2)设总收视人次为z万,则目标函数为z=60x+25y.,-
10、34-,考点1,考点2,考点3,所以,电视台每周播出甲连续剧6次,乙连续剧3次时才能使总收视人次最多.,-35-,考点1,考点2,考点3,解题心得求解线性规划的实际问题要注意两点:(1)设出未知数x,y,并写出问题中的约束条件和目标函数,注意约束条件中的不等式是否含有等号;(2)判断所设未知数x,y的取值范围,分析x,y是否为整数、非负数等.,-36-,考点1,考点2,考点3,对点训练3某企业生产甲、乙两种产品均需用A,B两种原料,已知生产1吨每种产品所需原料及每天原料的可用限额如表所示.如果生产1吨甲、乙产品可获利润分别为3万元、4万元,那么该企业每天可获得最大利润为 ()A.12万元B.1
11、6万元C.17万元D.18万元,答案,解析,-37-,考点1,考点2,考点3,线性目标函数最值问题的常见类型及解题策略:(1)求线性目标函数的最值.线性目标函数的最优解一般在平面区域的顶点或边界处取得,因此对于一般的线性规划问题,我们可以直接解出可行域的顶点,然后将坐标代入目标函数求出相应的数值,从而确定目标函数的最值.(2)由目标函数的最值求参数.求解线性规划中含参问题的基本方法有两种:一是把参数当成常数用,根据线性规划问题的求解方法求出最优解,代入目标函数确定最值,通过构造方程或不等式求解参数的值或取值范围;二是先分离含有参数的式子,通过观察的方法确定含参的式子所满足的条件,确定最优解的位置,从而求出参数.,