1、公众号码:王校长资源站4.4函数yAsin(x)的图象及应用最新考纲考情考向分析1.了解函数yAsin(x)的物理意义;能画出yAsin(x)的图象2.了解参数A,对函数图象变化的影响3.会用三角函数解决一些简单实际问题,体会三角函数是描述周期变化现象的重要函数模型.以考查函数yAsin(x)的图象的五点法画图、图象之间的平移伸缩变换、由图象求函数解析式以及利用正弦型函数解决实际问题为主,常与三角函数的性质、三角恒等变换结合起来进行综合考查,加强数形结合思想的应用意识题型为选择题和填空题,中档难度.1yAsin(x)的有关概念yAsin(x)(A0,0),xR振幅周期频率相位初相ATfx2.用
2、五点法画yAsin(x)(A0,0,xR)一个周期内的简图时,要找五个特征点如下表所示:xx02yAsin(x)0A0A03.函数ysin x的图象经变换得到yAsin(x)(A0,0)的图象的两种途径概念方法微思考1怎样从ysin x的图象变换得到ysin(x)(0,0)的图象?提示向左平移个单位长度2函数ysin(x)图象的对称轴是什么?提示x(kZ)题组一思考辨析1判断下列结论是否正确(请在括号中打“”或“”)(1)ysin的图象是由ysin的图象向右平移个单位长度得到的()(2)将函数ysin x的图象向右平移(0)个单位长度,得到函数ysin(x)的图象()(3)函数yAcos(x)
3、的最小正周期为T,那么函数图象的两个相邻对称中心之间的距离为.()(4)函数ysin x的图象上各点纵坐标不变,横坐标缩短为原来的,所得图象对应的函数解析式为ysin x.()题组二教材改编2为了得到函数y2sin的图象,可以将函数y2sin 2x的图象向_平移_个单位长度答案右3y2sin的振幅、频率和初相分别为_答案2,4如图,某地一天从614时的温度变化曲线近似满足函数yAsin(x)b,则这段曲线的函数解析式为_答案y10sin20,x6,14解析从题图中可以看出,从614时的是函数yAsin(x)b的半个周期,所以A(3010)10,b(3010)20,又146,所以.又1022k,
4、kZ,取,所以y10sin20,x6,14题组三易错自纠5要得到函数ysin的图象,只需将函数ysin 4x的图象()A向左平移个单位长度 B向右平移个单位长度C向左平移个单位长度 D向右平移个单位长度答案A解析ysinsin,要得到ysin的图象,只需将函数ysin 4x的图象向左平移个单位长度6将函数y2sin的图象向右平移个周期后,所得图象对应的函数为_答案y2sin解析函数y2sin的周期为,将函数y2sin的图象向右平移个周期,即个单位长度,所得函数为y2sin2sin.7(2018乌海模拟)ycos(x1)图象上相邻的最高点和最低点之间的距离是_答案解析相邻最高点与最低点的纵坐标之
5、差为2,横坐标之差恰为半个周期,故它们之间的距离为.8(2018沈阳质检)若函数f(x)Asin(x)(A0,0,0)的部分图象如图所示,则f的值为_答案解析由题干图象可知A2,T,T,2,当x时,函数f(x)取得最大值,22k(kZ),2k(kZ),又0,f(x)2sin,则f2sin2cos .题型一函数yAsin(x)的图象及变换例1 (2018丹东模拟)已知函数f(x)Asin(x)的最小正周期是,且当x时,f(x)取得最大值2.(1)求f(x)的解析式;(2)作出f(x)在0,上的图象(要列表)解(1)因为函数f(x)的最小正周期是,所以2.又因为当x时,f(x)取得最大值2.所以A
6、2,同时22k,kZ,2k,kZ,因为0)个单位长度后得到函数yg(x)的图象,且yg(x)是偶函数,求m的最小值解由已知得yg(x)f(xm)2sin2sin是偶函数,所以2m(2k1),kZ,m,kZ,又因为m0,所以m的最小值为.思维升华 (1)yAsin(x)的图象可用“五点法”作简图得到,可通过变量代换zx计算五点坐标(2)由函数ysin x的图象通过变换得到yAsin(x)的图象有两条途径:“先平移后伸缩”与“先伸缩后平移”跟踪训练1(1)(2018本溪调研)若把函数ysin的图象向左平移个单位长度,所得到的图象与函数ycos x的图象重合,则的一个可能取值是()A2 B. C.
7、D.答案A解析ysin和函数ycos x的图象重合,可得2k,kZ,则6k2,kZ.2是的一个可能值(2)(2018包头质检)已知函数f(x)sin(00)个单位长度,则m的最小值为()A1 B. C. D.答案A解析由题意得sin0,即k(kZ),则2k(kZ),结合02,得,所以f(x)sincoscos,所以只需将函数g(x)cos x的图象向右至少平移1个单位长度,即可得到函数yf(x)的图象,故选A.题型二由图象确定yAsin(x)的解析式例2 (1)若函数yAsin(x)的部分图象如图所示,则y_.答案2sin解析由题图可知,A2,T2,所以2,由五点作图法可知2,所以,所以函数的
8、解析式为y2sin.(2)已知函数f(x)sin(x) 的部分图象如图所示,则yf取得最小值时x的集合为_答案解析根据题干所给图象,周期T4,故,2,因此f(x)sin(2x),另外图象经过点,代入有22k(kZ),再由|0)个单位长度后,得到函数g(x)的图象关于点对称,则m的值可能为()A. B. C. D.答案D解析依题意得解得,故2,则f(x)sin(2x).又fsin,故2k(kZ),即2k(kZ)因为|,故,所以f(x)sin.将函数f(x)的图象向左平移m个单位长度后得到g(x)sin的图象,又函数g(x)的图象关于点对称,即h(x)sin的图象关于点对称,故sin0,即2mk(
9、kZ),故m(kZ)令k2,则m.题型三三角函数图象、性质的综合应用命题点1图象与性质的综合问题例3 已知函数f(x)2sin(x)的部分图象如图所示,若f(0),且8,B,C分别为最高点与最低点(1)求函数f(x)的单调递增区间;(2)若将f(x)的图象向左平移个单位长度,得到函数g(x)的图象,求函数g(x)在区间上的最大值和最小值解(1)由f(0),可得2sin ,即sin .又因为|,所以.由题意可知,则88,所以T.故2,所以f(x)2sin.由2k2x2k,kZ,解得kxk,kZ,所以函数f(x)的单调递增区间为,kZ.(2)由题意将f(x)的图象向左平移个单位长度,得到函数g(x
10、)的图象,g(x)f2sin2sin.x,2x,sin.当2x,即x0时,sin,g(x)取得最大值,当2x,即x时,sin1,g(x)取得最小值2.命题点2函数零点(方程根)问题例4 已知关于x的方程2sin2xsin 2xm10在上有两个不同的实数根,则m的取值范围是_答案(2,1)解析方程2sin2xsin 2xm10可转化为m12sin2xsin 2xcos 2xsin 2x2sin,x.设2xt,则t,题目条件可转化为sin t,t有两个不同的实数根y和ysin t,t的图象有两个不同交点,如图:由图象观察知,的取值范围是,故m的取值范围是(2,1)引申探究本例中,若将“有两个不同的
11、实数根”改成“有实根”,则m的取值范围是_答案2,1)解析由上例题知,的取值范围是,2m0)满足f(0)f,且函数在上有且只有一个零点,则f(x)的最小正周期为_答案解析f(0)f,x是f(x)图象的一条对称轴,f1,k,kZ,6k2,kZ,T(kZ)又f(x)在上有且只有一个零点,T,(kZ),k0)的最小正周期是,则其图象向右平移个单位长度后对应函数的单调递减区间是()A.(kZ)B.(kZ)C.(kZ)D.(kZ)答案B解析由题意知2,将函数f(x)的图象向右平移个单位长度后得到函数g(x)coscossin 2x的图象,由2k2x2k(kZ),解得所求函数的单调递减区间为(kZ)4.函
12、数f(x)sin(x)的部分图象如图所示,则f(x)的单调递增区间为()A14k,14k(kZ)B38k,18k(kZ)C14k,14k(kZ)D38k,18k(kZ)答案D解析由题图知,T4(31)8,所以,所以f(x)sin.把(1,1)代入,得sin1,即2k(kZ),又|0)个单位长度,所得函数图象关于y轴对称,则a的最小值是()A. B. C. D.答案B解析依题意得f(x)2sin,因为函数f(xa)2sin的图象关于y轴对称,所以sin1,ak,kZ,即ak,kZ,又a0,所以ak,kN.因此正数a的最小值是,故选B.6将函数f(x)sin(2x)的图象向左平移个单位长度后关于原
13、点对称,则函数f(x)在上的最小值为()A B C. D.答案A解析将函数f(x)sin(2x)的图象向左平移个单位长度得到ysinsin的图象,该图象关于原点对称,即为奇函数,则k(kZ),又|,所以,即f(x)sin.当x时,2x,所以当2x,即x0时,f(x)取得最小值,最小值为.7.已知函数f(x)Atan(x)的部分图象如图所示,则f_.答案解析由题干图象知2,所以2.因为2k(kZ),所以k(kZ),又|,所以,这时f(x)Atan.又函数图象过点(0,1),代入上式得A1,所以f(x)tan.所以ftan.8.已知函数f(x)sin(x)的部分图象如图所示,又x1,x2,且f(x
14、1)f(x2),则f(x1x2)_.答案解析由题图可知,则T,2,又,所以f(x)的图象过点,即sin1,所以22k,kZ,又|0),xR.若函数f(x)在区间(,)内单调递增,且函数yf(x)的图象关于直线x对称,则的值为_答案解析f(x)sin xcos xsin,因为f(x)在区间(,)内单调递增,且函数图象关于直线x对称,所以f()必为一个周期上的最大值,所以有2k,kZ,所以22k,kZ.又(),即2,即2,所以.11已知函数f(x)2sin(其中01),若点是函数f(x)图象的一个对称中心(1)求的值,并求出函数f(x)的单调递增区间;(2)先列表,再作出函数f(x)在区间,上的图
15、象解(1)因为点是函数f(x)图象的一个对称中心,所以k(kZ),3k(kZ),因为01,所以当k0时,可得.所以f(x)2sin.令2kx2k(kZ),解得2kx2k(kZ),所以函数的单调递增区间为(kZ)(2)由(1)知,f(x)2sin,x,列表如下:x0xf(x)120201作出函数部分图象如图所示:12(2017山东)设函数f(x)sinsin,其中03.已知f0.(1)求;(2)将函数yf(x)的图象上各点的横坐标伸长为原来的2倍(纵坐标不变),再将得到的图象向左平移个单位长度,得到函数yg(x)的图象,求g(x)在上的最小值解(1)因为f(x)sinsin,所以f(x)sin
16、xcos xcos xsin xcos xsin.由题设知f0,所以k,kZ,故6k2,kZ.又03,所以2.(2)由(1)得f(x)sin,所以g(x)sinsin.因为x,所以x,当x,即x时,g(x)取得最小值.13将函数f(x)sin(2x)的图象向右平移(0)个单位长度后,得到函数g(x)的图象,若f(x),g(x)的图象都经过点P,则的值为_答案解析g(x)sin2(x)sin(2x2),若f(x),g(x)的图象都经过点P,所以sin ,sin(2),又,所以,sin.又0,所以20),xR.在曲线yf(x)与直线y1的交点中,若相邻交点距离的最小值为,则f(x)的最小正周期为_
17、答案解析f(x)sin xcos x2sin(0)由2sin1,得sin,x2k或x2k(kZ)令k0,得x1,x2,x10,x2.由|x1x2|,得,2.故f(x)的最小正周期T.15已知函数yMsin(x)(M0,0,0)的图象关于直线x对称该函数的部分图象如图所示,ACBC,C90,则f的值为_答案解析依题意知,ABC是直角边长为的等腰直角三角形,因此其边AB上的高是,函数f(x)的最小正周期是2,故M,2,f(x)sin(x)又f(x)的图象关于直线x对称,fsin.k,kZ,又0,f(x)sin,fsin.16已知函数f(x)Asin(2x)的图象在y轴上的截距为1,且关于直线x对称,若存在x,使m23mf(x)成立,求实数m的取值范围解函数f(x)Asin(2x)的图象在y轴上的截距为1,Asin 1,即Asin .函数f(x)Asin(2x)的图象关于直线x对称,2k,kZ,又0,Asin,A,f(x)sin.当x时,2x,当2x,即x时,f(x)min2.令m23m2,解得m2或m1.公众号码:王校长资源站